348 research outputs found
How to accelerate protein search on DNA: Location and dissociation
One of the most important features of biological systems that controls their functioning is the ability of protein molecules to find and recognize quickly specific target sites on DNA. Although these phenomena have been studied extensively, detailed mechanisms of protein-DNA interactions during the search are still not well understood. Experiments suggest that proteins typically find their targets fast by combining three-dimensional and one-dimensional motions, and most of the searching time proteins are non-specifically bound to DNA. However these observations are surprising since proteins diffuse very slowly on DNA, and it seems that the observed fast search cannot be achieved under these conditions for single proteins. Here we propose two simple mechanisms that might explain some of these controversial observations. Using first-passage time analysis, it is shown explicitly that the search can be accelerated by changing the location of the target and by effectively irreversible dissociations of proteins. Our theoretical predictions are supported by Monte Carlo computer simulations
Radiation Pressure Dominate Regime of Relativistic Ion Acceleration
The electromagnetic radiation pressure becomes dominant in the interaction of
the ultra-intense electromagnetic wave with a solid material, thus the wave
energy can be transformed efficiently into the energy of ions representing the
material and the high density ultra-short relativistic ion beam is generated.
This regime can be seen even with present-day technology, when an exawatt laser
will be built. As an application, we suggest the laser-driven heavy ion
collider.Comment: 10 pages, 4 figure
In-Line-Test of Variability and Bit-Error-Rate of HfOx-Based Resistive Memory
Spatial and temporal variability of HfOx-based resistive random access memory
(RRAM) are investigated for manufacturing and product designs. Manufacturing
variability is characterized at different levels including lots, wafers, and
chips. Bit-error-rate (BER) is proposed as a holistic parameter for the write
cycle resistance statistics. Using the electrical in-line-test cycle data, a
method is developed to derive BERs as functions of the design margin, to
provide guidance for technology evaluation and product design. The proposed BER
calculation can also be used in the off-line bench test and build-in-self-test
(BIST) for adaptive error correction and for the other types of random access
memories.Comment: 4 pages. Memory Workshop (IMW), 2015 IEEE Internationa
Iterative graph cuts for image segmentation with a nonlinear statistical shape prior
Shape-based regularization has proven to be a useful method for delineating
objects within noisy images where one has prior knowledge of the shape of the
targeted object. When a collection of possible shapes is available, the
specification of a shape prior using kernel density estimation is a natural
technique. Unfortunately, energy functionals arising from kernel density
estimation are of a form that makes them impossible to directly minimize using
efficient optimization algorithms such as graph cuts. Our main contribution is
to show how one may recast the energy functional into a form that is
minimizable iteratively and efficiently using graph cuts.Comment: Revision submitted to JMIV (02/24/13
Nonlinear Lattice Waves in Random Potentials
Localization of waves by disorder is a fundamental physical problem
encompassing a diverse spectrum of theoretical, experimental and numerical
studies in the context of metal-insulator transition, quantum Hall effect,
light propagation in photonic crystals, and dynamics of ultra-cold atoms in
optical arrays. Large intensity light can induce nonlinear response, ultracold
atomic gases can be tuned into an interacting regime, which leads again to
nonlinear wave equations on a mean field level. The interplay between disorder
and nonlinearity, their localizing and delocalizing effects is currently an
intriguing and challenging issue in the field. We will discuss recent advances
in the dynamics of nonlinear lattice waves in random potentials. In the absence
of nonlinear terms in the wave equations, Anderson localization is leading to a
halt of wave packet spreading.
Nonlinearity couples localized eigenstates and, potentially, enables
spreading and destruction of Anderson localization due to nonintegrability,
chaos and decoherence. The spreading process is characterized by universal
subdiffusive laws due to nonlinear diffusion. We review extensive computational
studies for one- and two-dimensional systems with tunable nonlinearity power.
We also briefly discuss extensions to other cases where the linear wave
equation features localization: Aubry-Andre localization with quasiperiodic
potentials, Wannier-Stark localization with dc fields, and dynamical
localization in momentum space with kicked rotors.Comment: 45 pages, 19 figure
Perturbative analysis of wave interactions in nonlinear systems
This work proposes a new way for handling obstacles to asymptotic
integrability in perturbed nonlinear PDEs within the method of Normal Forms -
NF - for the case of multi-wave solutions. Instead of including the whole
obstacle in the NF, only its resonant part is included, and the remainder is
assigned to the homological equation. This leaves the NF intergable and its
solutons retain the character of the solutions of the unperturbed equation. We
exploit the freedom in the expansion to construct canonical obstacles which are
confined to te interaction region of the waves. Fo soliton solutions, e.g., in
the KdV equation, the interaction region is a finite domain around the origin;
the canonical obstacles then do not generate secular terms in the homological
equation. When the interaction region is infifnite, or semi-infinite, e.g., in
wave-front solutions of the Burgers equation, the obstacles may contain
resonant terms. The obstacles generate waves of a new type, which cannot be
written as functionals of the solutions of the NF. When an obstacle contributes
a resonant term to the NF, this leads to a non-standard update of th wave
velocity.Comment: 13 pages, including 6 figure
Metadevice for intensity modulation with sub-wavelength spatial resolution
Effectively continuous control over propagation of a beam of light requires light modulation with pixelation that is smaller than the optical wavelength. Here we propose a spatial intensity modulator with sub-wavelength resolution in one dimension. The metadevice combines recent advances in reconfigurable nanomembrane metamaterials and coherent all-optical control of metasurfaces. It uses nanomechanical actuation of metasurface absorber strips placed near a mirror in order to control their interaction with light from perfect absorption to negligible loss, promising a path towards dynamic beam diffraction, light focusing and holography without unwanted diffraction artefacts
Wavefront shaping with disorder-engineered metasurfaces
Recently, wavefront shaping with disordered media has demonstrated optical manipulation capabilities beyond those of conventional optics, including extended volume, aberration-free focusing and subwavelength focusing. However, translating these capabilities to useful applications has remained challenging as the input–output characteristics of the disordered media (P variables) need to be exhaustively determined via O(P) measurements. Here, we propose a paradigm shift where the disorder is specifically designed so its exact input–output characteristics are known a priori and can be used with only a few alignment steps. We implement this concept with a disorder-engineered metasurface, which exhibits additional unique features for wavefront shaping such as a large optical memory effect range in combination with a wide angular scattering range, excellent stability, and a tailorable angular scattering profile. Using this designed metasurface with wavefront shaping, we demonstrate high numerical aperture (NA > 0.5) focusing and fluorescence imaging with an estimated ~2.2 × 10^8 addressable points in an ~8 mm field of view
Temperature dependence of plasmonic terahertz absorption in grating-gate gallium-nitride transistor structures
Strong plasmon resonances have been observed in the terahertz transmission spectra (1-5 THz) of large-area slit-grating-gate AlGaN/GaN-based high-electron-mobility transistor (HEMT) structures at temperatures from 10 to 170 K. The resonance frequencies correspond to the excitation of plasmons with wave vectors equal to the reciprocal lattice vectors of the metal grating, which serves both as a gate electrode for the HEMT and a coupler between plasmons and incident terahertz radiation. Wide tunability of the resonances by the applied gate voltage demonstrates potential of these devices for terahertz applications
- …
