65 research outputs found
Digestão alcalina de tecido vegetal em forno de micro-ondas para determinação de silicio: uma alternativa aos métodos convencionais.
Avaliação de parâmetros para o preparo de materiais de referência.
Editado por Ana Rita de Araújo; Simone Cristina Méo Nicura
Prepare and Characterization of a Soil Reference Material for Inorganic Nutrients and Contaminants
A single active catalytic site is sufficient to promote transport in P-glycoprotein
P-glycoprotein (Pgp) is an ABC transporter responsible for
the ATP-dependent efflux of chemotherapeutic compounds from
multidrug resistant cancer cells. Better understanding of the
molecular mechanism of Pgp-mediated transport could promote
rational drug design to circumvent multidrug resistance. By
measuring drug binding affinity and reactivity to a
conformation-sensitive antibody we show here that nucleotide
binding drives Pgp from a high to a low substrate-affinity
state and this switch coincides with the flip from the
inward- to the outward-facing conformation. Furthermore, the
outward-facing conformation survives ATP hydrolysis: the
post-hydrolytic complex is stabilized by vanadate, and the
slow recovery from this state requires two functional
catalytic sites. The catalytically inactive double Walker A
mutant is stabilized in a high substrate affinity inward-open
conformation, but mutants with one intact catalytic center
preserve their ability to hydrolyze ATP and to promote drug
transport, suggesting that the two catalytic sites are
randomly recruited for ATP hydrolysis
Allosteric activation of an ion channel triggered by modification of mechanosensitive nano-pockets
Lipid availability within transmembrane nano-pockets of ion channels is linked with mechanosensation. However, the effect of hindering lipid-chain penetration into nano-pockets on channel structure has not been demonstrated. Here we identify nano-pockets on the large conductance mechanosensitive channel MscL, the high-pressure threshold channel. We restrict lipid-chain access to the nano-pockets by mutagenesis and sulfhydryl modification, and monitor channel conformation by PELDOR/DEER spectroscopy. For a single site located at the entrance of the nano-pockets and distal to the channel pore we generate an allosteric response in the absence of tension. Single-channel recordings reveal a significant decrease in the pressure activation threshold of the modified channel and a sub-conducting state in the absence of applied tension. Threshold is restored to wild-type levels upon reduction of the sulfhydryl modification. The modification associated with the conformational change restricts lipid access to the nano-pocket, interrupting the contact between the membrane and the channel that mediates mechanosensitivity
Multidrug efflux pumps:structure, function and regulation
Infections arising from multidrug-resistant pathogenic bacteria are spreading rapidly throughout the world and threaten to become untreatable. The origins of resistance are numerous and complex, but one underlying factor is the capacity of bacteria to rapidly export drugs through the intrinsic activity of efflux pumps. In this Review, we describe recent advances that have increased our understanding of the structures and molecular mechanisms of multidrug efflux pumps in bacteria. Clinical and laboratory data indicate that efflux pumps function not only in the drug extrusion process but also in virulence and the adaptive responses that contribute to antimicrobial resistance during infection. The emerging picture of the structure, function and regulation of efflux pumps suggests opportunities for countering their activities
Pyramiding <i>B</i> Genes in Cotton Achieves Broader But Not Always Higher Resistance to Bacterial Blight
Near-isogenic lines of upland cotton (Gossypium hirsutum) carrying single, race-specific genes B4, BIn, and b7 for resistance to bacterial blight were used to develop a pyramid of lines with all possible combinations of two and three genes to learn whether the pyramid could achieve broad and high resistance approaching that of L. A. Brinkerhoff's exceptional line Im216. Isogenic strains of Xanthomonas axonopodis pv. malvacearum carrying single avirulence (avr) genes were used to identify plants carrying specific resistance (B) genes. Under field conditions in north-central Oklahoma, pyramid lines exhibited broader resistance to individual races and, consequently, higher resistance to a race mixture. It was predicted that lines carrying two or three B genes would also exhibit higher resistance to race 1, which possesses many avr genes. Although some enhancements were observed, they did not approach the level of resistance of Im216. In a growth chamber, bacterial populations attained by race 1 in and on leaves of the pyramid lines decreased significantly with increasing number of B genes in only one of four experiments. The older lines, Im216 and AcHR, exhibited considerably lower bacterial populations than any of the one-, two-, or three-B-gene lines. A spreading collapse of spray-inoculated AcBIn and AcBInb7 leaves appears to be a defense response (conditioned by BIn) that is out of control. </jats:p
- …
