111 research outputs found
De succesfactoren voor een geslaagde productinnovatie : de theorie gekoppeld aan een praktijkvoorbeeld
Productinnovatie is belangrijk voor de marketing van tuinbouwbedrijven. Productinnovatie is kostbaar en risicovol maar gelukkig zijn succesfactoren voor nieuwe producten bekend: een superieur, innovatief product dat gebruik maakt van technologische en marketingvaardigheden van het bedrijf en dat tot stand komt in een marktgericht ontwikkelingsproces. Hoewel succesfactoren het succes van een productinnovatie goed voorspellen, circuleren er allerlei smoezen om de succesfactoren niet toe te passen. De ervaringen van Boomkwekerij Van der Starre laten zien dat succesvolle productinnovatie mogelijk is wanneer de succesfactoren worden toegepas
Efficiënt en schoon fossiel: complementair of contraproductief?:een systeemstudie naar de interactie tussen decentale WKK binnen de sector huishoudens en centrale CO2-afvangst en opslag
Cultural legitimacy and innovation journeys : a new perspective applied to Dutch and British nuclear power
A learning theory of attachment: Unraveling the black box of attachment development
Attachment is an inborn behavioral system that is biologically driven and essential for survival. During child development, individual differences in (in)secure attachment emerge. The development of different attachment behaviors has been traditionally explained as a process during which experiences with (lack of) responsive and supportive care are internalized into working models of attachment. However, this idea has been criticized for being vague and even untestable. With the aim of unraveling this black box, we propose to integrate evidence from conditioning research with attachment theory to formulate a Learning Theory of Attachment. In this review, we explain how the development of individual differences in attachment security at least partly follows the principles of classical and operant conditioning. We combine observed associations between attachment and neurocognitive and endocrinological (cortisol, oxytocin, and dopamine) processes with insights in conditioning dynamics to explain the development of attachment. This may contribute to the explanation of empirical observations in attachment research that are insufficiently accounted for by traditional attachment theory
Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens
BACKGROUND:Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. METHODOLOGY/PRINCIPAL FINDINGS:In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. CONCLUSIONS/SIGNIFICANCE:Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III)
Metabolism of halophilic archaea
In spite of their common hypersaline environment, halophilic archaea are surprisingly different in their nutritional demands and metabolic pathways. The metabolic diversity of halophilic archaea was investigated at the genomic level through systematic metabolic reconstruction and comparative analysis of four completely sequenced species: Halobacterium salinarum, Haloarcula marismortui, Haloquadratum walsbyi, and the haloalkaliphile Natronomonas pharaonis. The comparative study reveals different sets of enzyme genes amongst halophilic archaea, e.g. in glycerol degradation, pentose metabolism, and folate synthesis. The carefully assessed metabolic data represent a reliable resource for future system biology approaches as it also links to current experimental data on (halo)archaea from the literature
“Hot standards” for the thermoacidophilic archaeon Sulfolobus solfataricus
Within the archaea, the thermoacidophilic crenarchaeote Sulfolobus solfataricus has become an important model organism for physiology and biochemistry, comparative and functional genomics, as well as, more recently also for systems biology approaches. Within the Sulfolobus Systems Biology (“SulfoSYS”)-project the effect of changing growth temperatures on a metabolic network is investigated at the systems level by integrating genomic, transcriptomic, proteomic, metabolomic and enzymatic information for production of a silicon cell-model. The network under investigation is the central carbohydrate metabolism. The generation of high-quality quantitative data, which is critical for the investigation of biological systems and the successful integration of the different datasets, derived for example from high-throughput approaches (e.g., transcriptome or proteome analyses), requires the application and compliance of uniform standard protocols, e.g., for growth and handling of the organism as well as the “–omics” approaches. Here, we report on the establishment and implementation of standard operating procedures for the different wet-lab and in silico techniques that are applied within the SulfoSYS-project and that we believe can be useful for future projects on Sulfolobus or (hyper)thermophiles in general. Beside established techniques, it includes new methodologies like strain surveillance, the improved identification of membrane proteins and the application of crenarchaeal metabolomics
Chronic oxytocin-driven alternative splicing of Crfr2α induces anxiety
The neuropeptide oxytocin (OXT) has generated considerable interest as potential treatment for psychiatric disorders, including anxiety and autism spectrum disorders. However, the behavioral and molecular consequences associated with chronic OXT treatment and chronic receptor (OXTR) activation have scarcely been studied, despite the potential therapeutic long-term use of intranasal OXT. Here, we reveal that chronic OXT treatment over two weeks increased anxiety-like behavior in rats, with higher sensitivity in females, contrasting the well-known anxiolytic effect of acute OXT. The increase in anxiety was transient and waned 5 days after the infusion has ended. The behavioral effects of chronic OXT were paralleled by activation of an intracellular signaling pathway, which ultimately led to alternative splicing of hypothalamic corticotropin-releasing factor receptor 2α (Crfr2α), an important modulator of anxiety. In detail, chronic OXT shifted the splicing ratio from the anxiolytic membrane-bound (mCRFR2α) form of CRFR2α towards the soluble CRFR2α (sCRFR2α) form. Experimental induction of alternative splicing mimicked the anxiogenic effects of chronic OXT, while sCRFR2α-knock down reduced anxiety-related behavior of male rats. Furthermore, chronic OXT treatment triggered the release of sCRFR2α into the cerebrospinal fluid with sCRFR2α levels positively correlating with anxiety-like behavior. In summary, we revealed that the shifted splicing ratio towards expression of the anxiogenic sCRFR2α underlies the adverse effects of chronic OXT treatment on anxiety
Orientação empreendedora e competências de marketing no desempenho organizacional: um estudo em empresas de base tecnológica
Once the shovel hits the ground : Evaluating the management of complex implementation processes of public-private partnership infrastructure projects with qualitative comparative analysis
Much attention is being paid to the planning of public-private partnership (PPP) infrastructure projects. The subsequent implementation phase – when the contract has been signed and the project ‘starts rolling’ – has received less attention. However, sound agreements and good intentions in project planning can easily fail in project implementation. Implementing PPP infrastructure projects is complex, but what does this complexity entail? How are projects managed, and how do public and private partners cooperate in implementation? What are effective management strategies to achieve satisfactory outcomes? This is the fi rst set of questions addressed in this thesis. Importantly, the complexity of PPP infrastructure development imposes requirements on the evaluation methods that can be applied for studying these questions. Evaluation methods that ignore complexity do not create a realistic understanding of PPP implementation processes, with the consequence that evaluations tell us little about what works and what does not, in which contexts, and why. This hampers learning from evaluations. What are the requirements for a complexity-informed evaluation method? And how does qualitative comparative analysis (QCA) meet these requirements? This is the second set of questions addressed in this thesis
- …
