65 research outputs found

    Grading of carotid artery stenosis with multidetector-row CT angiography: visual estimation or caliper measurements?

    Get PDF
    To assess the optimal method for grading carotid artery stenosis with computed tomographic angiography (CTA), we compared visual estimation to caliper measurements, and determined inter-observer variability and agreement relative to digital subtraction angiography (DSA). We included 46 patients with symptomatic carotid stenosis for whom CTA and DSA of 55 carotids was available. Stenosis quantification by CTA using visual estimation (CTAVE) (method 1) was compared with caliper measurements using subjectively optimized wide window settings (method 2) or predefined contrast-dependent narrow window settings (method 3). Measurements were independently performed by two radiologists and two residents. To determine accuracy and inter-observer variability, we calculated linear weighted kappa, performed a Bland-Altman analysis and calculated mean difference (bias) and standard deviation of differences (SDD). For inter-observer variability, kappa analysis was “very good” (0.85) for expert observers using CTAVE compared with “good” (0.61) for experts using DSA. Compared with DSA, method 1 led to overestimation (bias 5.8–8.0%, SDD 10.6–14.4), method 3 led to underestimation (bias −6.3 to −3.0%, SDD 13.0–18.1). Measurement variability between DSA and visual estimation on CTA (SDD 11.5) is close to the inter-observer variability of repeated measurements on DSA that we found in this study (SDD 11.6). For CTA of carotids, stenosis grading based on visual estimation provides better agreement to grading by DSA compared with stenosis grading based on caliper measurements

    Laboratory selection for an accelerated mosquito sexual development rate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Separating males and females at the early adult stage did not ensure the virginity of females of <it>Anopheles arabiensis </it>(Dongola laboratory strain), whereas two years earlier this method had been successful. In most mosquito species, newly emerged males and females are not able to mate successfully. For anopheline species, a period of 24 h post-emergence is generally required for the completion of sexual maturation, which in males includes a 180° rotation of the genitalia. In this study, the possibility of an unusually shortened sexual maturity period in the laboratory-reared colony was investigated.</p> <p>Methods</p> <p>The effect of two different sex-separation methods on the virginity of females was tested: females separated as pupae or less than 16 h post-emergence were mated with males subjected to various doses of radiation. T-tests were performed to compare the two sex-separation methods. The rate of genitalia rotation was compared for laboratory-reared and wild males collected as pupae in Dongola, Sudan, and analysed by Z-tests. Spermatheca dissections were performed on females mated with laboratory-reared males to determine their insemination status.</p> <p>Results</p> <p>When the sex-separation was performed when adults were less than 16 h post-emergence, expected sterility was never reached for females mated with radio-sterilized males. Expected sterility was accomplished only when sexes were separated at the pupal stage. Observation of genitalia rotation showed that some males from the laboratory strain Dongola were able to successfully mate only 11 h after emergence and 42% of the males had already completed rotation. A small proportion of the same age females were inseminated. Wild males showed a much slower genitalia rotation rate. At 17 h post-emergence, 96% of the laboratory-reared males had completed genitalia rotation whereas none of the wild males had.</p> <p>Conclusion</p> <p>This colony has been cultured in the laboratory for over one hundred generations, and now has accelerated sexual maturation when compared with the wild strain. This outcome demonstrates the kinds of selection that can be expected during insect colonization and maintenance, particularly when generations are non-overlapping and similar-age males must compete for mates.</p

    Comparison of male reproductive success in malaria-refractory and susceptible strains of Anopheles gambiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In female mosquitoes that transmit malaria, the benefits of being refractory to the <it>Plasmodium </it>parasite are balanced by the immunity costs in the absence of infection. Male mosquitoes, however, gain no advantage from being refractory to blood-transmitted parasites, so that any costs associated with an enhanced immune system in the males limit the evolution of female refractoriness and has practical implications for the release of transgenic males.</p> <p>Methods</p> <p>Aspects of the male cost of carrying <it>Plasmodium</it>-refractory genes were estimated by comparing the males' immune response and reproductive success among strains of <it>Anopheles gambiae </it>that had been selected for refractoriness or extreme susceptibility to the rodent malaria parasite, <it>Plasmodium yoelii nigeriensis</it>. The refractory males had a stronger melanization response than males from the susceptible line. Four traits were used as correlates of a male's reproductive success: the proportion of females that were inseminated by a fixed number of males in a cage within a fixed time frame, the proportion of females with motile sperm in their spermathecae, the proportion of ovipositing females, and the mean number of eggs per batch.</p> <p>Results</p> <p>Although there were significant differences among groups of males in sperm motility and oviposition success, these differences in male reproductive success were not associated with the refractory or susceptible male genotypes. Contrary to expectation, females mated to early emerging refractory males laid significantly more eggs per batch than females mated to later emerging susceptible males. Sperm motility and oviposition success were strongly correlated suggesting that variation in sperm motility influences female oviposition and ultimately male reproductive success.</p> <p>Conclusion</p> <p>An increased melanization response in male <it>A. gambiae </it>does not diminish male reproductive success under the experimental protocol used in this study. That refractory males induced ovipositing females to lay more eggs than susceptible males is an interesting result for any strategy considering the release of transgenic males. That sperm motility influences female oviposition is also important for the release of transgenic males.</p

    Spatial distribution and male mating success of Anopheles gambiae swarms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles gambiae </it>mates in flight at particular mating sites over specific landmarks known as swarm markers. The swarms are composed of males; females typically approach a swarm, and leave <it>in copula</it>. This mating aggregation looks like a lek, but appears to lack the component of female choice. To investigate the possible mechanisms promoting the evolution of swarming in this mosquito species, we looked at the variation in mating success between swarms and discussed the factors that structure it in light of the three major lekking models, known as the female preference model, the hotspot model, and the hotshot model.</p> <p>Results</p> <p>We found substantial variation in swarm size and in mating success between swarms. A strong correlation between swarm size and mating success was observed, and consistent with the hotspot model of lek formation, the <it>per capita </it>mating success of individual males did not increase with swarm size. For the spatial distribution of swarms, our results revealed that some display sites were more attractive to both males and females and that females were more attracted to large swarms. While the swarm markers we recognize help us in localizing swarms, they did not account for the variation in swarm size or in the swarm mating success, suggesting that mosquitoes probably are attracted to these markers, but also perceive and respond to other aspects of the swarming site.</p> <p>Conclusions</p> <p>Characterizing the mating system of a species helps understand how this species has evolved and how selective pressures operate on male and female traits. The current study looked at male mating success of <it>An. gambiae </it>and discussed possible factors that account for its variation. We found that swarms of <it>An. gambiae </it>conform to the hotspot model of lek formation. But because swarms may lack the female choice component, we propose that the <it>An. gambiae </it>mating system is a lek-like system that incorporates characteristics pertaining to other mating systems such as scramble mating competition.</p

    Genetic variation of male reproductive success in a laboratory population of Anopheles gambiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For Anopheline mosquitoes, the vectors of human malaria, genetic variation in male reproductive success can have important consequences for any control strategy based on the release of transgenic or sterile males.</p> <p>Methods</p> <p>A quantitative genetics approach was used to test whether there was a genetic component to variation in male reproductive success in a laboratory population of <it>Anopheles gambiae</it>. Swarms of full sibling brothers were mated with a fixed number of females and their reproductive success was measured as (1) proportion of ovipositing females, (2) proportion of ovipositing females that produced larvae, (3) proportion of females that produced larvae, (4) number of eggs laid per female, (5) number of larvae per ovipositing female and (6) number of larvae per female.</p> <p>Results</p> <p>The proportion of ovipositing females (trait 1) and the proportion of ovipositing females that produced larvae (trait 2) differed among full sib families, suggesting a genetic basis of mating success. In contrast, the other measures of male reproductive success showed little variation due to the full sib families, as their variation are probably mostly due to differences among females. While age at emergence and wing length of the males were also heritable, they were not associated with reproductive success. Larger females produced more eggs, but males did not prefer such partners.</p> <p>Conclusion</p> <p>The first study to quantify genetic variation for male reproductive success in <it>A. gambiae </it>found that while the initial stages of male reproduction (i.e. the proportion of ovipositing females and the proportion of ovipositing females that produced larvae) had a genetic basis, the overall reproductive success (i.e. the mean number of larvae per female) did not.</p

    Male mating biology

    Get PDF
    Before sterile mass-reared mosquitoes are released in an attempt to control local populations, many facets of male mating biology need to be elucidated. Large knowledge gaps exist in how both sexes meet in space and time, the correlation of male size and mating success and in which arenas matings are successful. Previous failures in mosquito sterile insect technique (SIT) projects have been linked to poor knowledge of local mating behaviours or the selection of deleterious phenotypes during colonisation and long-term mass rearing. Careful selection of mating characteristics must be combined with intensive field trials to ensure phenotypic characters are not antagonistic to longevity, dispersal, or mating behaviours in released males. Success has been achieved, even when colonised vectors were less competitive, due in part to extensive field trials to ensure mating compatibility and effective dispersal. The study of male mating biology in other dipterans has improved the success of operational SIT programmes. Contributing factors include inter-sexual selection, pheromone based attraction, the ability to detect alterations in local mating behaviours, and the effects of long-term colonisation on mating competitiveness. Although great strides have been made in other SIT programmes, this knowledge may not be germane to anophelines, and this has led to a recent increase in research in this area
    corecore