1,418 research outputs found
Buffer loading and chunking in sequential keypressing
Thirty-six participants practiced a task in which they continuously cycled through a fixed series of nine keypresses, each carried out by a single finger (cf. Keele & Summers, 1976). The results of the first experimental phase, the practice phase, support the notion that pauses between successive keypresses at fixed locations induces the development of integrated sequence representations (i.e., motor chunks) and reject the idea that a rhythm is learned. When different sequences were produced in the transfer phase, performance dropped considerably unless the sequence was relatively short and there was ample time for preparation. This demonstrates that motor chunks are content specific and that the absence of motor chunks shows when there is no time for advance loading of the motor buffer or the capacity of the motor buffer is insufficient to contain the entire keypressing sequence
Representations underlying skill in the discrete sequence production task: effect of hand used and hand position
Various studies suggest that movement sequences are initially learned predominantly in effector-independent spatial coordinates and only after extended practice in effector-dependent coordinates. The present study examined this notion for the discrete sequence production (DSP) task by manipulating the hand used and the position of the hand relative to the body. During sequence learning in Experiment 1, in which sequences were executed by reacting to key-specific cues, hand position appeared important for execution with the practiced but not with the unpracticed hand. In Experiment 2 entire sequences were executed by reacting to one cue. This produced similar results as in Experiment 1. These experiments support the notion that robustness of sequencing skill is based on several codes, one being a representation that is both effector and position dependent
The effect of continuous, nonlinearly transformed visual feedback on rapid aiming movements
We investigated the ability to adjust to nonlinear transformations that allow people to control external systems like machines and tools. Earlier research (Verwey and Heuer 2007) showed that in the presence of just terminal feedback participants develop an internal model of such transformations that operates at a relatively early processing level (before or at amplitude specification). In this study, we investigated the level of operation of the internal model after practicing with continuous visual feedback. Participants executed rapid aiming movements, for which a nonlinear relationship existed between the target amplitude seen on the computer screen and the required movement amplitude of the hand on a digitizing tablet. Participants adjusted to the external transformation by developing an internal model. Despite continuous feedback, explicit awareness of the transformation did not develop and the internal model still operated at the same early processing level as with terminal feedback. Thus with rapid aiming movements, the type of feedback may not matter for the locus of operation of the internal model
Detecting short periods of elevated workload. A comparison of nine workload assessment techniques
The present experiment tested the merits of 9 common workload assessment techniques with relatively short periods of workload in a car-driving task. Twelve participants drove an instrumented car and performed a visually loading task and a mentally loading task for 10, 30, and 60 s. The results show that 10-s periods of visual and mental workload can be measured successfully with subjective ratings and secondary task performance. With respect to longer loading periods (30 and 60 s), steering frequency was found to be sensitive to visual workload, and skin conductance response (SCR) was sensitive to mental workload. The results lead to preliminary guidelines that will help applied researchers to determine which techniques are best suited for assessing visual and mental workload
Properties of alkali-halide salt solutions about polarizable nanoparticle solutes for different ion models
Screening of charged spheroidal colloidal particles
We study the effective screened electrostatic potential created by a
spheroidal colloidal particle immersed in an electrolyte, within the mean field
approximation, using Poisson--Botzmann equation in its linear and nonlinear
forms, and also beyond the mean field by means of Monte Carlo computer
simulation. The anisotropic shape of the particle has a strong effect on the
screened potential, even at large distances (compared to the Debye length) from
it. To quantify this anisotropy effect, we focus our study on the dependence of
the potential on the position of the observation point with respect with the
orientation of the spheroidal particle. For several different boundary
conditions (constant potential, or constant surface charge) we find that, at
large distance, the potential is higher in the direction of the large axis of
the spheroidal particle
Long range polarization attraction between two different likely charged macroions
It is known that in a water solution with multivalent counterions (Z-ions),
two likely charged macroions can attract each other due to correlations of
Z-ions adsorbed on their surfaces. This "correlation" attraction is
short-ranged and decays exponentially with increasing distance between
macroions at characteristic distance A/2\pi, where A is the average distance
between Z-ions on the surfaces of macroions. In this work, we show that an
additional long range "polarization" attraction exists when the bare surface
charge densities of the two macroions have the same sign, but are different in
absolute values. The key idea is that with adsorbed Z-ions, two insulating
macroions can be considered as conductors with fixed but different electric
potentials. Each potential is determined by the difference between the entropic
bulk chemical potential of a Z-ion and its correlation chemical potential at
the surface of the macroion determined by its bare surface charge density. When
the two macroions are close enough, they get polarized in such a way that their
adjacent spots form a charged capacitor, which leads to attraction. In a salt
free solution this polarization attractive force is long ranged: it decays as a
power of the distance between the surfaces of two macroions, d. The
polarization force decays slower than the van der Waals attraction and
therefore is much larger than it in a large range of distances. In the presence
of large amount of monovalent salt, when A/2\pi<< d<< r_s (r_s is the
Debye-H\"{u}ckel screening radius), this force is still much stronger than the
van der Waals attraction and the correlation attraction mentioned above.Comment: 12 pages, 7 figures. Small change in the text, no change in result
Nonlinear screening of charged macromolecules
We present several aspects of the screening of charged macromolecules in an
electrolyte. After a review of the basic mean field approach, based on the
linear Debye-Huckel theory, we consider the case of highly charged
macromolecules, where the linear approximation breaks down and the system is
described by full nonlinear Poisson-Boltzmann equation. Some analytical results
for this nonlinear equation give some interesting insight on physical phenomena
like the charge renormalization and the Manning counterion condensation
- …
