14 research outputs found
The Turkey Ig-like receptor family: identification, expression and function.
The chicken leukocyte receptor complex located on microchromosome 31 encodes the chicken Ig-like receptors (CHIR), a vastly expanded gene family which can be further divided into three subgroups: activating CHIR-A, bifunctional CHIR-AB and inhibitory CHIR-B. Here, we investigated the presence of CHIR homologues in other bird species. The available genome databases of turkey, duck and zebra finch were screened with different strategies including BLAST searches employing various CHIR sequences, and keyword searches. We could not identify CHIR homologues in the distantly related zebra finch and duck, however, several partial and complete sequences of CHIR homologues were identified on chromosome 3 of the turkey genome. They were designated as turkey Ig-like receptors (TILR). Using cDNA derived from turkey blood and spleen RNA, six full length TILR could be amplified and further divided according to the typical sequence features into one activating TILR-A, one inhibitory TILR-B and four bifunctional TILR-AB. Since the TILR-AB sequences all displayed the critical residues shown to be involved in binding to IgY, we next confirmed the IgY binding using a soluble TILR-AB1-huIg fusion protein. This fusion protein reacted with IgY derived from various gallinaceous birds, but not with IgY from other bird species. Finally, we tested various mab directed against CHIR for their crossreactivity with either turkey or duck leukocytes. Whereas no staining was detectable with duck cells, the CHIR-AB1 specific mab 8D12 and the CHIR-A2 specific mab 13E2 both reacted with a leukocyte subpopulation that was further identified as thrombocytes by double immunofluorescence employing B-cell, T-cell and thrombocyte specific reagents. In summary, although the turkey harbors similar LRC genes as the chicken, their distribution seems to be distinct with predominance on thrombocytes rather than lymphocytes
Chicken TREM-B1, an Inhibitory Ig-Like Receptor Expressed on Chicken Thrombocytes
Triggering receptors expressed on myeloid cells (TREM) form a multigene family of immunoregulatory Ig-like receptors and play important roles in the regulation of innate and adaptive immunity. In chickens, three members of the TREM family have been identified on chromosome 26. One of them is TREM-B1 which possesses two V-set Ig-domains, an uncharged transmembrane region and a long cytoplasmic tail with one ITSM and two ITIMs indicating an inhibitory function. We generated specific monoclonal antibodies by immunizing a Balb/c mouse with a TREM-B1-FLAG transfected BWZ.36 cell line and tested the hybridoma supernatants on TREM-B1-FLAG transfected 2D8 cells. We obtained two different antibodies specific for TREM-B1, mab 7E8 (mouse IgG1) and mab 1E9 (mouse IgG2a) which were used for cell surface staining. Single and double staining of different tissues, including whole blood preparations, revealed expression on thrombocytes. Next we investigated the biochemical properties of TREM-B1 by using the specific mab 1E9 for immunoprecipitation of either lysates of surface biotinylated peripheral blood cells or stably transfected 2D8 cells. Staining with streptavidin coupled horse radish peroxidase revealed a glycosylated monomeric protein of about 50 kDa. Furthermore we used the stably transfected 2D8 cell line for analyzing the cytoplasmic tyrosine based signaling motifs. After pervanadate treatment, we detected phosphorylation of the tyrosine residues and subsequent recruitment of the tyrosine specific protein phosphatase SHP-2, indicating an inhibitory potential for TREM-B1. We also showed the inhibitory effect of TREM-B1 in chicken thrombocytes using a CD107 degranulation assay. Crosslinking of TREM-B1 on activated primary thrombocytes resulted in decreased CD107 surface expression of about 50-70%
Chicken CRTAM Binds Nectin-Like 2 Ligand and Is Upregulated on CD8⁺ αβ and γδ T Lymphocytes with Different Kinetics
During a search for immunomodulatory receptors in the chicken genome, we identified a previously cloned chicken sequence as CRTAM homologue by its overall identity and several conserved sequence features. For further characterization, we generated a CRTAM specific mab. No staining was detectable in freshly isolated cell preparations from thymus, bursa, caecal tonsils, spleen, blood and intestine. Activation of splenocytes with recombinant IL-2 increased rapid CRTAM expression within a 2 h period on about 30% of the cells. These CRTAM+ cells were identified as CD8+ γδ T lymphocytes. In contrast, CRTAM expression could not be stimulated on PBL with IL-2, even within a 48 h stimulation period. As a second means of activation, T cell receptor (TCR) crosslinking using an anti-αβ-TCR induced CRTAM on both PBL and splenocytes. While CRTAM expression was again rapidly upregulated on splenocytes within 2 h, it took 48 h to reach maximum levels of CRTAM expression in PBL. Strikingly, albeit the stimulation of splenocytes was performed with anti-αβ-TCR, CRTAM expression after 2 h was mainly restricted to CD8+ γδ T lymphocytes, however, the longer anti-TCR stimulation of peripheral blood lymphocytes (PBL) resulted in CRTAM expression on αβ T lymphocytes. In order to characterize the potential ligand we cloned and expressed chicken Necl-2, a member of the nectin and nectin-like family which is highly homologous to its mammalian counterpart. Three independent assays including a reporter assay, staining with a CRTAM-Ig fusion protein and a cell conjugate assay confirmed the interaction of CRTAM with Necl-2 which could also be blocked by a soluble CRTAM-Ig fusion protein or a CRTAM specific mab. These results suggest that chicken CRTAM represents an early activation antigen on CD8+ T cells which binds to Necl-2 and is upregulated with distinct kinetics on αβ versus γδ T lymphocytes
Transcriptomic Profiling of Virus-Host Cell Interactions following Chicken Anaemia Virus (CAV) Infection in an In Vivo Model.
Chicken Anaemia Virus (CAV) is an economically important virus that targets lymphoid and erythroblastoid progenitor cells leading to immunosuppression. This study aimed to investigate the interplay between viral infection and the host's immune response to better understand the pathways that lead to CAV-induced immunosuppression. To mimic vertical transmission of CAV in the absence of maternally-derived antibody, day-old chicks were infected and their responses measured at various time-points post-infection by qRT-PCR and gene expression microarrays. The kinetics of mRNA expression levels of signature cytokines of innate and adaptive immune responses were determined by qRT-PCR. The global gene expression profiles of mock-infected (control) and CAV-infected chickens at 14 dpi were also compared using a chicken immune-related 5K microarray. Although in the thymus there was evidence of induction of an innate immune response following CAV infection, this was limited in magnitude. There was little evidence of a Th1 adaptive immune response in any lymphoid tissue, as would normally be expected in response to viral infection. Most cytokines associated with Th1, Th2 or Treg subsets were down-regulated, except IL-2, IL-13, IL-10 and IFNγ, which were all up-regulated in thymus and bone marrow. From the microarray studies, genes that exhibited significant (greater than 1.5-fold, false discovery rate <0.05) changes in expression in thymus and bone marrow on CAV infection were mainly associated with T-cell receptor signalling, immune response, transcriptional regulation, intracellular signalling and regulation of apoptosis. Expression levels of a number of adaptor proteins, such as src-like adaptor protein (SLA), a negative regulator of T-cell receptor signalling and the transcription factor Special AT-rich Binding Protein 1 (SATB1), were significantly down-regulated by CAV infection, suggesting potential roles for these genes as regulators of viral infection or cell defence. These results extend our understanding of CAV-induced immunosuppression and suggest a global immune dysregulation following CAV infection
Structure of a Classical MHC Class I Molecule That Binds “Non-Classical” Ligands
The chicken MHC YF1*7.1 X-ray structures reveal that this protein binds lipids and thus represents a "hybrid" class I complex with features of classical as well as non-classical MHC molecules
N-glycan PK Profiling Using a High Sensitivity nanoLCMS Work-Flow with Heavy Stable Isotope Labeled Internal Standard and Application to a Preclinical Study of an IgG1 Biopharmaceutical
Chicken CRTAM Binds Nectin-Like 2 Ligand and Is Upregulated on CD8+ αβ and γδ T Lymphocytes with Different Kinetics
Chicken NK cell receptors
Natural killer cells are innate immune cells that destroy virally infected or transformed cells. They recognize these altered cells by a plethora of diverse receptors and thereby differ from other lymphocytes that use clonally distributed antigen receptors. To date, several receptor families that play a role in either activating or inhibiting NK cells have been identified in mammals. In the chicken, NK cells have been functionally and morphologically defined, however, a conclusive analysis of receptors involved in NK cell mediated functions has not been available. This is partly due to the low frequencies of NK cells in blood or spleen that has hampered their intensive characterization. Here we will review recent progress regarding the diverse NK cell receptor families, with special emphasis on novel families identified in the chicken genome with potential as chicken NK cell receptors
