1,332 research outputs found
Electron-spectroscopic investigation of metal-insulator transition in Sr2Ru1-xTixO4 (x=0.0-0.6)
We investigate the nature and origin of the metal-insulator transition in
Sr2Ru1-xTixO4 as a function of increasing Ti content (x). Employing detailed
core, valence, and conduction band studies with x-ray and ultraviolet
photoelectron spectroscopies along with Bremsstrahlung isochromat spectroscopy,
it is shown that a hard gap opens up for Ti content greater than equal to 0.2,
while compositions with x<0.2 exhibit finite intensity at the Fermi energy.
This establishes that the metal-insulator transition in this homovalent
substituted series of compounds is driven by Coulomb interaction leading to the
formation of a Mott gap, in contrast to transitions driven by disorder effects
or band flling.Comment: Accepted for publication in Phys. Rev.
Functionalization of carbon nanotubes using phenosafranin
The functionalization of carbon nanotubes by using phenosafranin was discussed. The self-assembly of phenosafranin (PSF) to multiwalled carbon nanotube (MWNT) was shown by using spectroscopic analysis and atomic force microscopy (AFM) phase imaging studies. It was observed that the shift in absorption spectra was associated with charge transfer of valence electrons from PSF to electron accepting sites on the MWNT. The Raman-active disorder modes were used to fingerprint PSF attachment to MWNT via defect states. A molecular topographic visual confirmation of PSF attached to the MWNT was obtained by using AFM phase imaging
Effects of free stream turbulence, Reynolds number, and incidence angle on axial turbine cascade performance
A large-scale, low-speed, axial-turbine cascade was designed using a fast interactive design code and tested over a range of turbulence level and incidence angle for Reynolds numbers typically present in gas turbines. In all, 36 test conditions were examined;Testing was done primarily to investigate the profile boundary layer development under different inlet flow conditions. Glue-on hot-film gages and surface flow visualizations were used to identify transition and separation over the airfoil surface. In addition to transition measurements, overall cascade performance was determined from static pressure distributions on the airfoil and detailed five-hole pressure probe and hot-wire probe traverses in an exit plane of the cascade;The measured transition start and end points were compared against predictions using existing transition models. Also, the measured losses were compared against predicted losses from boundary layer calculations based on dissipation integral and finite difference analyses
Organo-arsenic molecular layers on silicon for high-density doping
This article describes for the first time the controlled monolayer doping (MLD) of bulk and nanostructured crystalline silicon with As at concentrations approaching 2 x 10²⁰ atoms cm⁻³. Characterization of doped structures after the MLD process confirmed that they remained defect- and damage-free, with no indication of increased roughness or a change in morphology. Electrical characterization of the doped substrates and nanowire test structures allowed determination of resistivity, sheet resistance, and active doping levels. Extremely high As-doped Si substrates and nanowire devices could be obtained and controlled using specific capping and annealing steps. Significantly, the As-doped nanowires exhibited resistances several orders of magnitude lower than the predoped materials
Automatic generation of hardware/software interfaces
Enabling new applications for mobile devices often requires the use of specialized hardware to reduce power consumption. Because of time-to-market pressure, current design methodologies for embedded applications require an early partitioning of the design, allowing the hardware and software to be developed simultaneously, each adhering to a rigid interface contract. This approach is problematic for two reasons: (1) a detailed hardware-software interface is difficult to specify until one is deep into the design process, and (2) it prevents the later migration of functionality across the interface motivated by efficiency concerns or the addition of features. We address this problem using the Bluespec Codesign Language~(BCL) which permits the designer to specify the hardware-software partition in the source code, allowing the compiler to synthesize efficient software and hardware along with transactors for communication between the partitions. The movement of functionality across the hardware-software boundary is accomplished by simply specifying a new partitioning, and since the compiler automatically generates the desired interface specifications, it eliminates yet another error-prone design task. In this paper we present BCL, an extension of a commercially available hardware design language (Bluespec SystemVerilog), a new software compiling scheme, and preliminary results generated using our compiler for various hardware-software decompositions of an Ogg Vorbis audio decoder, and a ray-tracing application.National Science Foundation (U.S.) (NSF (#CCF-0541164))National Research Foundation of Korea (grant from the Korean Government (MEST) (#R33-10095)
Graphene Photonics and Optoelectronics
The richness of optical and electronic properties of graphene attracts
enormous interest. Graphene has high mobility and optical transparency, in
addition to flexibility, robustness and environmental stability. So far, the
main focus has been on fundamental physics and electronic devices. However, we
believe its true potential to be in photonics and optoelectronics, where the
combination of its unique optical and electronic properties can be fully
exploited, even in the absence of a bandgap, and the linear dispersion of the
Dirac electrons enables ultra-wide-band tunability. The rise of graphene in
photonics and optoelectronics is shown by several recent results, ranging from
solar cells and light emitting devices, to touch screens, photodetectors and
ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres
"It's a can of worms": understanding primary care practitioners' behaviours in relation to HPV using the Theoretical Domains Framework
Background: The relationship between infection with high-risk human papillomavirus (HPV) and cervical cancer is transforming cervical cancer prevention. HPV tests and vaccinations have recently become available. In Ireland, as elsewhere, primary care practitioners play a key role in prevention. ATHENS (A Trial of HPV Education and Support) aims to develop a theorybased intervention to support primary care practitioners in their HPV-related practice. This study, the first step in the intervention development process, aimed to: identify HPV-related clinical behaviours that the intervention will target; clarify general practitioners’ (GPs’) and practice nurses’ roles and responsibilities; and determine factors that potentially influence clinical behaviour. A secondary objective was to informally assess the utility of the Theoretical Domains Framework (TDF) in understanding clinical behaviours in an area with an evolving evidence-base.
Methods: In-depth semi-structured telephone interviews were conducted with GPs and practice nurses. The topic guide, which contained open questions and HPV-related clinical scenarios, was developed through literature review and clinical experience. Interview transcripts were content-analysed using the TDF as the coding framework.
Results: 19 GPs and 14 practice nurses were interviewed. The major HPV-related clinical behaviours were: initiating a discussion about HPV infection with female patients; offering/recommending HPV vaccination to appropriate patients; and answering patients’ questions about HPV testing. While the responsibility for taking smears was considered a female role, both male and female practitioners dealt with HPV-related issues. All 12 theoretical domains arose in relation to HPV infection; the domains judged to be most important were: knowledge, emotion, social influences, beliefs about capabilities and beliefs about consequences. Eleven domains emerged in relation to HPV vaccination, with beliefs about consequences, social influences, knowledge and environmental context and resources judged to be the most important. Nine domains were relevant to HPV testing, with knowledge and beliefs about capabilities judged to be the most important.
Conclusions: The findings confirm the need for an intervention to support primary care practitioners around HPV and suggest it should target a range of theoretical domains. The TDF proved valuable in analysing qualitative data collected using a topic guide not specifically designed to capture TDF domains and understanding clinical behaviours in an area with an evolving evidence-base
Natural coagulates for wastewater treatment; a review for application and mechanism
The increase of water demand and wastewater generation is among the global concerns in the world. The less effective management of water sources leads to serious consequences, the direct disposal of untreated wastewater is associated with the environmental pollution, elimination of aquatic life and the spread of deadly epidemics. The flocculation process is one of the most important stages in water and wastewater treatment plants, wherein this phase the plankton, colloidal particles, and pollutants are precipitated and removed. Two major types of coagulants are used in the flocculation process included the chemical and natural coagulants. Many studies have been performed to optimize the flocculation process while most of these studies have confirmed the hazardous effects of chemical coagulants utilization on the ecosystem. This chapter reviews a summary of the coagulation/flocculation processes using natural coagulants as well as reviews one of the most effective natural methods of water and wastewater treatment
Optimizing the Luring Period of Protein and Food Baits for Melon Fly (Zeugodacus cucurbitae Coquilette) Management
Backgrounds: This study was carried out to determine the effective duration of protein and food baits in field traps for maximizing melon fruit fly captures. As protein and food baits trap both male and female fruit flies, employing these traps in field conditions is considered as a reliable alternate management strategy.
Aim of the Work: Determination of trap placement periods in field conditions for maximum trap catches of melon fruit flies.
Methodology: Olfactometer bioassays were conducted to assess the persistence of bait attractiveness. Changes in pH and protein content of baits were monitored over time.
Results: Proteinex bait showed peak attraction between I–X days after preparation (DAP), while soybean bait was most effective from I–IX DAP. Tomato bait attracted the highest number of fruit flies at XII–XII DAP, and banana bait showed maximum attraction at I–VIII DAP. Protein baits had higher pH and protein content, correlating with their superior trap efficacy.
Conclusion: For effective melon fly management, proteinex and soybean baits should be replaced every 10–12 days, tomato baits every 13 days, and banana baits every 8 days. The higher pH and protein content of protein baits contributed to their greater effectiveness, making them a valuable tool in sustainable pest control strategies
- …
