14 research outputs found
Three reasons why the Water Framework Directive (WFD) fails to identify pesticide risks
Small streams–large concentrations? Pesticide monitoring in small agricultural streams in Germany during dry weather and rainfall
Standard Versus Natural: Assessing the Impact of Environmental Variables on Organic Matter Decomposition in Streams Using Three Substrates
AbstractThe decomposition of allochthonous organic matter, such as leaves, is a crucial ecosystem process in low‐order streams. Microbial communities, including fungi and bacteria, colonize allochthonous organic material, break up large molecules, and increase the nutritional value for macroinvertebrates. Environmental variables are known to affect microbial as well as macroinvertebrate communities and alter their ability to decompose organic matter. Studying the relationship between environmental variables and decomposition has mainly been realized using leaves, with the drawbacks of differing substrate composition and consequently between‐study variability. To overcome these drawbacks, artificial substrates have been developed, serving as standardizable surrogates. In the present study, we compared microbial and total decomposition of leaves with the standardized substrates of decotabs and, only for microbial decomposition, of cotton strips, across 70 stream sites in a Germany‐wide study. Furthermore, we identified the most influential environmental variables for the decomposition of each substrate from a range of 26 variables, including pesticide toxicity, concentrations of nutrients, and trace elements, using stability selection. The microbial as well as total decomposition of the standardized substrates (i.e., cotton strips and decotabs) were weak or not associated with that of the natural substrate (i.e., leaves, r² < 0.01 to r² = 0.04). The decomposition of the two standardized substrates, however, showed a moderate association (r² = 0.21), which is probably driven by their similar composition, with both being made of cellulose. Different environmental variables were identified as the most influential for each of the substrates and the directions of these relationships contrasted between the substrates. Our results imply that these standardized substrates are unsuitable surrogates when investigating the decomposition of allochthonous organic matter in streams. Environ Toxicol Chem 2023;42:2007–2018. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.Deutsche Forschungsgemeinschaft
http://dx.doi.org/10.13039/501100001659Umweltbundesamt
http://dx.doi.org/10.13039/501100010809https://doi.org/10.1594/PANGAEA.93167
Small streams–large concentrations? Pesticide monitoring in small agricultural streams in Germany during dry weather and rainfall
Standard Versus Natural : Assessing the Impact of Environmental Variables on Organic Matter Decomposition in Streams Using Three Substrates
Assessing the Mixture Effects in <i>In Vitro</i> Bioassays of Chemicals Occurring in Small Agricultural Streams during Rain Events
Assessing the mixture effects in in vitro bioassays of chemicals occurring in small agricultural streams during rain events
Rain events may impact the chemical pollution burden in rivers. Forty-four small streams in Germany were profiled during several rain events for the presence of 395 chemicals and five types of mixture effects in in vitro bioassays (cytotoxicity; activation of the estrogen, aryl hydrocarbon, and peroxisome proliferator-activated receptors; and oxidative stress response). While these streams were selected to cover a wide range of agricultural impacts, in addition to the expected pesticides, wastewater-derived chemicals and chemicals typical for street runoff were detected. The unexpectedly high estrogenic effects in many samples indicated the impact by wastewater or overflow of combined sewer systems. The 128 water samples exhibited a high diversity of chemical and effect patterns, even for different rain events at the same site. The detected 290 chemicals explained only a small fraction
