23 research outputs found
The role of autophagy in survival response induced by 27-hydroxycholesterol in human promonocytic cells.
Autophagy has been shown to be stimulated in advanced atherosclerotic plaques by metabolic stress, inflammation and oxidized lipids. The lack of published studies addressing the potential stimulation of pro-survival autophagy by oxysterols, a family of cholesterol oxidation products, has prompted our study. Thus, the goal of the current study is to elucidate the molecular mechanism of the autophagy induced by 27-hydroxycholesterol (27-OH), that is one of the most abundant oxysterols in advanced atherosclerotic lesions, and to assess whether the pro-oxidant effect of the oxysterol is involved in the given response. Here we showed that 27-OH, in a low micromolar range, activates a pro-survival autophagic response in terms of increased LC3 II/LC3 I ratio and Beclin 1, that depends on the up-regulation of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways as a potential result of an intracellular reactive oxygen species increase provoked by the oxysterol in human promonocytic U937 cells. Moreover, 27-OH induced autophagy is dependent on the relation between nuclear factor erythroid 2 p45-related factor 2 (Nrf2)-dependent antioxidant response and p62. The data obtained highlight the involvement of cholesterol oxidation products in the pathogenesis of oxidative stress related chronic diseases like atherosclerosis. Therefore, deeply understanding the complex mechanism and generating synthetic or natural molecules targeting this survival mechanism might be very promising tools in the prevention of such diseases. Keywords: Oxysterols, 27-hydroxycholesterol, Autophagy, ROS, Survival signalin
Effects of Scorpion venom peptide B5 on hematopoietic recovery in irradiated mice and the primary mechanisms
VCP Is an Integral Component of a Novel Feedback Mechanism that Controls Intracellular Localization of Catalase and H2O2 Levels
Iron Chelators in Photodynamic Therapy Revisited: Synergistic Effect by Novel Highly Active Thiosemicarbazones
Cytochrome P450 3A1 Mediates 2,2′,4,4′-Tetrabromodiphenyl Ether-Induced Reduction of Spermatogenesis in Adult Rats
BACKGROUND: 2,2′,4,4′-tetrabromodiphenyl ether (BDE47) is the dominant PBDE congener in humans, wildlife, and the environment. It has been reported to be metabolized by cytochrome P450 (CYP) enzymes. Still, the effects of BDE47 on spermatogenesis failure are attracting an increasing amount of attention. However, it is unclear whether CYP-mediated metabolism contributes to BDE47-induced reproductive toxicity. METHODOLOGY AND PRINCIPAL FINDINGS: The role of cytochrome P450 3A1 (CYP3A1) in the formation of oxidative metabolites of BDE47 and its induced spermatogenesis failure was investigated in SD rats. BDE47 significantly increased the expression and activity of CYP3A1 in rat liver, and 3-OH-BDE47, the major oxidative metabolite of BDE47, dose-dependently increased in rat liver, serum, and testis, which was aggravated by dexamethasone (DEX), an inducer of CYP3A1. Additionally, testicular 3-OH-BDE47 and reactive oxygen species (ROS) in seminiferous tubules increased especially when BDE47 was administered in combination with DEX, which was confirmed in GC-1 and GC-2 cells that 3-OH-BDE47 induced more ROS production and cell apoptosis via the upregulation of FAS/FASL, p-p53 and caspase 3. As a result, daily sperm production dose-dependently decreased, consistent with histological observations in giant cells and vacuolar spaces and increase in TUNEL-positive apoptotic germ cells. CONCLUSION: CYP3A1-mediated metabolic activation of BDE47 and the active metabolite 3-OH-BDE47 and consequent ROS played an important role in reduction of spermatogenesis by germ cell apoptosis. Our study helps provide new insights into the mechanism of reproductive toxicity of environmental chemicals
Oxidative DNA Damage in Barrett Mucosa: Correlation with Telomeric Dysfunction and p53 Mutation.
Background. Barrett esophagus develops in a scenario of chronic inflammation, linked to free radical formation and oxidative DNA damage. Eight-hydroxydeoxyguanosine, the main oxidative DNA adduct, is partially repaired by a glycosylase (OGG1) whose polymorphism is associated to a reduced repair capacity. Telomeres are particularly prone to oxidative damage, which leads to shortening and cell senescence, while elongation, by telomerase activity, is linked to cell immortalization and cancer. Limited data are available on this point with respect to Barrett esophagus. This study aimed to evaluate the link among 8-hydroxydeoxyguanosine, OGG1 polymorphism, telomerase activity, telomere length, and p53 mutation in Barrett progression.
Methods. Forty consecutive patients with short- and long-segment Barrett esophagus and 20 controls with gastroesophageal reflux disease without Barrett esophagus were recruited. Analysis of biopsy samples was undertaken to study 8-hydroxydeoxyguanosine levels, OGG1 polymorphism, telomerase activity, and telomere length. Serum samples were obtained for p53 mutation.
Results. Controls had significantly lower levels of 8-hydroxydeoxyguanosine and telomerase activity, with normal telomere length and no p53 mutation. In short- segment Barrett esophagus, 8-hydroxydeoxyguanosine levels were higher and telomeres underwent significant shortening, with stimulation of telomerase activity but no p53 mutations. In long-segment Barrett esophagus, 8-hydroxydeoxyguanosine reached maximal levels, with telomere elongation, and 42 % of the patients showed p53 mutation.
Conclusions. In Barrett patients, with disease progression, oxidative DNA damage accumulates, causing telomere instability, telomerase activation, and, in a late phase, mutations in the p53 gene, thus abrogating its activity as the checkpoint of proliferation and apoptosis, and facilitating progression to cancer
