46,782 research outputs found
Radio detection of H2O in comet Bradfield (1974b)
Results of observations of comet Bradfield using the Haystack telescope are summarized with emphasis on the detection of the 1.35 cm emission line of water in the comet. The excitation of water and methyl cyanide in comets is briefly considered
On Pauli Pairs
The state of a system in classical mechanics can be uniquely reconstructed if
we know the positions and the momenta of all its parts. In 1958 Pauli has
conjectured that the same holds for quantum mechanical systems. The conjecture
turned out to be wrong. In this paper we provide a new set of examples of Pauli
pairs, being the pairs of quantum states indistinguishable by measuring the
spatial location and momentum. In particular, we construct a new set of
spatially localized Pauli pairs.Comment: submitted to JM
Do Spinors Frame-Drag?
We investigate the effect of the intrinsic spin of a fundamental spinor field
on the surrounding spacetime geometry. We show that despite the lack of a
rotating stress-energy source (and despite claims to the contrary) the
intrinsic spin of a spin-half fermion gives rise to a frame-dragging effect
analogous to that of orbital angular momentum, even in Einstein-Hilbert gravity
where torsion is constrained to be zero. This resolves a paradox regarding the
counter-force needed to restore Newton's third law in the well known spin-orbit
interaction. In addition, the frame-dragging effect gives rise to a {\it
long-range} gravitationally mediated spin-spin dipole interaction coupling the
{\it internal} spins of two sources. We argue that despite the weakness of the
interaction, the spin-spin interaction will dominate over the ordinary inverse
square Newtonian interaction in any process of sufficiently high-energy for
quantum field theoretical effects to be non-negligible.Comment: V2: published version, mostly minor clarifications from V
Characteristics and carbon stable isotopes of fluids in the Southern Kerala granulites and their bearing on the source of CO2
Carbon dioxide-rich inclusions commonly occur in the banded charnockites and khondalites of southern Kerala as well as in the incipient charnockites formed by desiccation of gneisses along oriented zones. The combined high density fluid inclusion isochores and the range of thermometric estimates from mineral assemblages indicate entrapment pressures in the range of 5.4 to 6.1 Kbar. The CO2 equation of state barometry closely compares with the 5 plus or minus 1 Kbar estimate from mineral phases for the region. The isochores for the high density fluid inclusions in all the three rock types pass through the P-T domain recorded by phase equilibria, implying that carbon dioxide was the dominating ambient fluid species during peak metamorphic conditions. In order to constrain the source of fluids and to evaluate the mechanism of desiccation, researchers undertook detailed investigations of the carbon stable isotope composition of entrapped fluids. Researchers report here the results of preliminary studies in some of the classic localities in southern Kerala namely, Ponmudi, Kottavattom, Manali and Kadakamon
Electron tunneling time measured by photoluminescence excitation correlation spectroscopy
The tunneling time for electrons to escape from the lowest quasibound state in the quantum wells of GaAs/AlAs/GaAs/AlAs/GaAs double-barrier heterostructures with barriers between 16 and 62 Å has been measured at 80 K using photoluminescence excitation correlation spectroscopy. The decay time for samples with barrier thicknesses from 16 Å (≈12 ps) to 34 Å(≈800 ps) depends exponentially on barrier thickness, in good agreement with calculations of electron tunneling time derived from the energy width of the resonance. Electron and heavy hole carrier densities are observed to decay at the same rate, indicating a coupling between the two decay processes
The study of comets, part 1
Papers are presented dealing with observations of comets. Topic discussed include: photometry, polarimetry, and astrometry of comets; detection of water and molecular transitions in comets; ion motions in comet tails; determination of comet brightness and luminosity; and evolution of cometary orbits. Emphasis is placed on analysis of observations of comet Kohoutek
A survey of polarization in the JVAS/CLASS flat-spectrum radio source surveys: I. The data and catalogue production
We have used the very large JVAS/CLASS 8.4-GHz surveys of flat-spectrum radio
sources to obtain a large, uniformly observed and calibrated, sample of radio
source polarizations. These are useful for many investigations of the
properties of radio sources and the interstellar medium. We discuss comparisons
with polarization measurements from this survey and from other large-scale
surveys of polarization in flat-spectrum sources.Comment: Accepted by MNRAS. 8 pages, 5 figures. Full version of Table 2
available at http://www.jb.man.ac.uk/~njj/classqu_po
Exact 1-D Model for Coherent Synchrotron Radiation with Shielding and Bunch Compression
Coherent Synchrotron Radiation has been studied effectively using a
1-dimensional model for the charge distribution in the realm of small angle
approximations and high energies. Here we use Jefimenko's form of Maxwell's
equations, without such approximations, to calculate the exact wake-fields due
to this effect in multiple bends and drifts. It has been shown before that the
influence of a drift can propagate well into a subsequent bend. We show, for
reasonable parameters, that the influence of a previous bend can also propagate
well into a subsequent bend, and that this is especially important at the
beginning of a bend. Shielding by conducting parallel plates is simulated using
the image charge method. We extend the formalism to situations with compressing
and decompressing distributions, and conclude that simpler approximations to
bunch compression usually overestimates the effect. Additionally, an exact
formula for the coherent power radiated by a Gaussian bunch is derived by
considering the coherent synchrotron radiation spectrum, and is used to check
the accuracy of wake-field calculations
Hysteresis effects in rotating Bose-Einstein condensates
We study the formation of vortices in a dilute Bose-Einstein condensate
confined in a rotating anisotropic trap. We find that the number of vortices
and angular momentum attained by the condensate depends upon the rotation
history of the trap and on the number of vortices present in the condensate
initially. A simplified model based on hydrodynamic equations is developed, and
used to explain this effect in terms of a shift in the resonance frequency of
the quadrupole mode of the condensate in the presence of a vortex lattice.
Differences between the spin-up and spin-down response of the condensate are
found, demonstrating hysteresis phenomena in this system.Comment: 16 pages, 7 figures; revised after referees' report
Stable isotope studies on granulites from the high grade terrain of Southern India
Fluid inclusion and petrologic characteristics of South India granulites and their bearing on the sources of metamorphic fluids are discussed. This paper served as a review and an introduction to the next paper by D. Jackson. Jackson presented carbon isotope data from gases extracted from fluid inclusions in South Indian granulites. The uniformly low Delta C-13 values (minus 10 plus or minus 2 per mil) and the greater abundance of CO2 in the incipient charnockites are suggestive of fluid influx from an externally buffered reservoir
- …
