18,679 research outputs found

    Parity meter for charge qubits: an efficient quantum entangler

    Get PDF
    We propose a realization of a charge parity meter based on two double quantum dots alongside a quantum point contact. Such a device is a specific example of the general class of mesoscopic quadratic quantum measurement detectors previously investigated by Mao et al. [Phys. Rev. Lett. 93, 056803 (2004)]. Our setup accomplishes entangled state preparation by a current measurement alone, and allows the qubits to be effectively decoupled by pinching off the parity meter. Two applications of the parity meter are discussed: the measurement of Bell's inequality in charge qubits and the realization of a controlled NOT gate.Comment: 8 pages, 4 figures; v2: discussion of measurement time, references adde

    Temporal variations in scattering and dispersion measure in the Crab Pulsar and their effect on timing precision

    Get PDF
    We have measured variations in scattering time scales in the Crab Pulsar over a 30-year period, using observations made at 610 MHz with the 42-ft telescope at Jodrell Bank Observatory. Over more recent years, where regular Lovell Telescope observations at frequencies around 1400 MHz were available, we have also determined the dispersion measure variations, after disentangling the scattering delay from the dispersive delay. We demonstrate a relationship between scattering and dispersion measure variations, with a correlation coefficient of 0.56±0.010.56\pm0.01. The short time scales over which these quantities vary, the size of the variations, and the close correlation between scattering and dispersion measure all suggest that the effects are due to discrete structures within the Crab Nebula, with size scales of 6\sim6 AU (corresponding to an angular size of 2\sim2 mas at an assumed distance of 2200 pc). We mitigate the effects of scattering on the observed pulse shape by using the measured scattering information to modify the template used for generating the pulse arrival times, thus improving the precision to which the pulsar can be timed. We test this on timing data taken during periods of high scattering, and obtain a factor of two improvement in the root mean square of the timing residuals.Comment: 10 pages, 7 figures. Accepted for publication in MNRA

    Assumptions that imply quantum dynamics is linear

    Full text link
    A basic linearity of quantum dynamics, that density matrices are mapped linearly to density matrices, is proved very simply for a system that does not interact with anything else. It is assumed that at each time the physical quantities and states are described by the usual linear structures of quantum mechanics. Beyond that, the proof assumes only that the dynamics does not depend on anything outside the system but must allow the system to be described as part of a larger system. The basic linearity is linked with previously established results to complete a simple derivation of the linear Schrodinger equation. For this it is assumed that density matrices are mapped one-to-one onto density matrices. An alternative is to assume that pure states are mapped one-to-one onto pure states and that entropy does not decrease.Comment: 10 pages. Added references. Improved discussion of equations of motion for mean values. Expanded Introductio

    On the magnetic structure of the solar transition region

    Full text link
    We examine the hypothesis that ``cool loops'' dominate emission from solar transition region plasma below temperatures of 2×1052\times10^5K. We compare published VAULT images of H Lα\alpha, a lower transition region line, with near-contemporaneous magnetograms from Kitt Peak, obtained during the second flight (VAULT-2) on 14 June 2002. The measured surface fields and potential extrapolations suggest that there are too few short loops, and that Lα\alpha emission is associated with the base regions of longer, coronal loops. VAULT-2 data of network boundaries have an asymmetry on scales larger than supergranules, also indicating an association with long loops. We complement the Kitt Peak data with very sensitive vector polarimetric data from the Spectro-Polarimeter on board Hinode, to determine the influence of very small magnetic concentrations on our analysis. From these data two classes of behavior are found: within the cores of strong magnetic flux concentrations (>5×1018> 5\times10^{18} Mx) associated with active network and plage, small-scale mixed fields are absent and any short loops can connect just the peripheries of the flux to cell interiors. Core fields return to the surface via longer, most likely coronal, loops. In weaker concentrations, short loops can connect between concentrations and produce mixed fields within network boundaries as suggested by Dowdy and colleagues. The VAULT-2 data which we examined are associated with strong concentrations. We conclude that the cool loop model applies only to a small fraction of the VAULT-2 emission, but we cannot discount a significant role for cool loops in quieter regions. We suggest a physical picture for how network Lα\alpha emission may occur through the cross-field diffusion of neutral atoms from chromospheric into coronal plasma.Comment: Accepted by ApJ, 9 May 200

    Quantum Discord and Quantum Computing - An Appraisal

    Full text link
    We discuss models of computing that are beyond classical. The primary motivation is to unearth the cause of nonclassical advantages in computation. Completeness results from computational complexity theory lead to the identification of very disparate problems, and offer a kaleidoscopic view into the realm of quantum enhancements in computation. Emphasis is placed on the `power of one qubit' model, and the boundary between quantum and classical correlations as delineated by quantum discord. A recent result by Eastin on the role of this boundary in the efficient classical simulation of quantum computation is discussed. Perceived drawbacks in the interpretation of quantum discord as a relevant certificate of quantum enhancements are addressed.Comment: To be published in the Special Issue of the International Journal of Quantum Information on "Quantum Correlations: entanglement and beyond." 11 pages, 4 figure

    Electrostatics of ions inside the nanopores and trans-membrane channels

    Full text link
    A model of a finite cylindrical ion channel through a phospholipid membrane of width LL separating two electrolyte reservoirs is studied. Analytical solution of the Poisson equation is obtained for an arbitrary distribution of ions inside the trans-membrane pore. The solution is asymptotically exact in the limit of large ionic strength of electrolyte on the two sides of membrane. However, even for physiological concentrations of electrolyte, the electrostatic barrier sizes found using the theory are in excellent agreement with the numerical solution of the Poisson equation. The analytical solution is used to calculate the electrostatic potential energy profiles for pores containing charged protein residues. Availability of a semi-exact interionic potential should greatly facilitate the study of ionic transport through nanopores and ion channels

    Uncollapsing the wavefunction by undoing quantum measurements

    Full text link
    We review and expand on recent advances in theory and experiments concerning the problem of wavefunction uncollapse: Given an unknown state that has been disturbed by a generalized measurement, restore the state to its initial configuration. We describe how this is probabilistically possible with a subsequent measurement that involves erasing the information extracted about the state in the first measurement. The general theory of abstract measurements is discussed, focusing on quantum information aspects of the problem, in addition to investigating a variety of specific physical situations and explicit measurement strategies. Several systems are considered in detail: the quantum double dot charge qubit measured by a quantum point contact (with and without Hamiltonian dynamics), the superconducting phase qubit monitored by a SQUID detector, and an arbitrary number of entangled charge qubits. Furthermore, uncollapse strategies for the quantum dot electron spin qubit, and the optical polarization qubit are also reviewed. For each of these systems the physics of the continuous measurement process, the strategy required to ideally uncollapse the wavefunction, as well as the statistical features associated with the measurement is discussed. We also summarize the recent experimental realization of two of these systems, the phase qubit and the polarization qubit.Comment: 19 pages, 4 figure

    Methods for detection and characterization of signals in noisy data with the Hilbert-Huang Transform

    Full text link
    The Hilbert-Huang Transform is a novel, adaptive approach to time series analysis that does not make assumptions about the data form. Its adaptive, local character allows the decomposition of non-stationary signals with hightime-frequency resolution but also renders it susceptible to degradation from noise. We show that complementing the HHT with techniques such as zero-phase filtering, kernel density estimation and Fourier analysis allows it to be used effectively to detect and characterize signals with low signal to noise ratio.Comment: submitted to PRD, 10 pages, 9 figures in colo
    corecore