208,319 research outputs found

    Gauge Theory of Gravity Requires Massive Torsion Field

    Get PDF
    One of the greatest unsolved issues of the physics of this century is to find a quantum field theory of gravity. According to a vast amount of literature unification of quantum field theory and gravitation requires a gauge theory of gravity which includes torsion and an associated spin field. Various models including either massive or massless torsion fields have been suggested. We present arguments for a massive torsion field, where the probable rest mass of the corresponding spin three gauge boson is the Planck mass.Comment: 3 pages, Revte

    Universal pulse sequence to minimize spin dephasing in the central spin decoherence problem

    Full text link
    We present a remarkable finding that a recently discovered [G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)] series of pulse sequences, designed to optimally restore coherence to a qubit in the spin-boson model of decoherence, is in fact completely model-independent and generically valid for arbitrary dephasing Hamiltonians given sufficiently short delay times between pulses. The series maximizes qubit fidelity versus number of applied pulses for sufficiently short delay times because the series, with each additional pulse, cancels successive orders of a time expansion for the fidelity decay. The "magical" universality of this property, which was not appreciated earlier, requires that a linearly growing set of "unknowns" (the delay times) must simultaneously satisfy an exponentially growing set of nonlinear equations that involve arbitrary dephasing Hamiltonian operators.Comment: Published in PRL, revise

    Uses of a small field value which falls from a metastable maximum over cosmological times

    Full text link
    We consider a small, metastable maximum vacuum expectation value b0b_0 of order of a few eV, for a pseudoscalar Goldstone-like field, which is related to the scalar inflaton field ϕ\phi in an idealized model of a cosmological, spontaneously-broken chiral symmetry. The b field allows for relating semi-quantitatively three distinct quantities in a cosmological context. (1) A very small, residual vacuum energy density or effective cosmological constant of ~ lambda b_0^4 ~ 2.7 x 10^{-47}GeV^4, for lambda ~ 3 x 10^{-14}, the same as an empirical inflaton self-coupling. (2) A tiny neutrino mass, less then b_0. (3) A possible small variation downward of the proton to electron mass ratio over cosmological time. The latter arises from the motion downward of the bb field over cosmological time, toward a nonzero limiting value as tt \to \infty. Such behavior is consistent with an equation of motion. We argue that hypothetical b quanta, potentially inducing new long-range forces, are absent, because of negative, effective squared mass in an equation of motion for bb-field fluctuations.Comment: version accepted for publication in Mod.Phys.Lett.

    Inverse Modelling to Obtain Head Movement Controller Signal

    Get PDF
    Experimentally obtained dynamics of time-optimal, horizontal head rotations have previously been simulated by a sixth order, nonlinear model driven by rectangular control signals. Electromyography (EMG) recordings have spects which differ in detail from the theoretical rectangular pulsed control signal. Control signals for time-optimal as well as sub-optimal horizontal head rotations were obtained by means of an inverse modelling procedures. With experimentally measured dynamical data serving as the input, this procedure inverts the model to produce the neurological control signals driving muscles and plant. The relationships between these controller signals, and EMG records should contribute to the understanding of the neurological control of movements

    Dirac's Observables for the SU(3)XSU(2)XU(1) Standard Model

    Get PDF
    The complete, missing, Hamiltonian treatment of the standard SU(3)xSU(2)xU(1) model with Grassmann-valued fermion fields in the Higgs phase is given. We bypass the complications of the Hamiltonian theory in the Higgs phase, resulting from the spontaneous symmetry breaking with the Higgs mechanism, by studying the Hamiltonian formulation of the Higgs phase for the gauge equivalent Lagrangian in the unitary gauge. A canonical basis of Dirac's observables is found and the reduced physical Hamiltonian is evaluated. Its self-energy part is nonlocal for the electromagnetic and strong interactions, but local for the weak ones. Therefore, the Fermi 4-fermion interaction reappears at the nonperturbative level.Comment: 90 pages, RevTeX, no figure

    ``Superfast'' Reaction in Turbulent Flow with Potential Disorder

    Full text link
    We explore the regime of ``superfast'' reactivity that has been predicted to occur in turbulent flow in the presence of potential disorder. Computer simulation studies confirm qualitative features of the previous renormalization group predictions, which were based on a static model of turbulence. New renormalization group calculations for a more realistic, dynamic model of turbulence show that the superfast regime persists. This regime, with concentration decay exponents greater than that for a well-mixed reaction, appears to be a general result of the interplay among non-linear reaction kinetics, turbulent transport, and local trapping by potential disorder.Comment: 14 pages. 4 figures. Uses IOP styles. To appear in J. Phys. A: Math. Ge

    Remote Camera and Trapping Survey of the Deep-water Shrimps Heterocarpus laevigatus and H. ensifer and the Geryonid Crab Chaceon granulatus in Palau

    Get PDF
    Time-lapse remote photo-sequences at 73-700 m depth off Palau, Western Caroline Islands, show that the caridean shrimp Heterocarpus laevigatus tends to be a solitary animal, occurring below ~350 m, that gradually accumulates around bait sites over a prolonged period. A smaller speies, H. ensifer, tends to move erratically in swarms, appearing in large numbers in the upper part of its range (<250 m) during the evening crepuscular period and disappearing at dawn. Trapping and photsequence data indicate the depth range of H. ensifer (during daylight) is ~250-550 M, while H. laevigatus ranges from 350 m to at least 800 m, along with the geryonid crab Chaceon granulatus. Combined trapping for Heterocarpus laevigatus and Chaceon granulatus, using a three-chamber box-trap and extended soak times (48-72 hr), may be an appropriate technique for small-scale deep-water fisheries along forereef slopes of Indo-Pacific archipelagoes

    Relaxor characteristics at the interfaces of [NdMnO3/SrMnO3/LaMnO3] superlattices

    Full text link
    We have investigated the magnetic properties of transition metal oxide superlattices with broken inversion symmetry composed of three different antiferromagnetic insulators, [NdMnO3/SrMnO3/LaMnO3]. In the superlattices studied here, we identify the emergence of a relaxor, glassy-like behavior below spin glass temperature, T=36K. Our results offer the possibility to study and utilize magnetically metastable devices confined in nano-scale interfaces
    corecore