2,642 research outputs found

    Herschel and Spitzer observations of slowly rotating, nearby isolated neutron stars

    Full text link
    Supernova fallback disks around neutron stars have been discussed to influence the evolution of the diverse neutron star populations. Slowly rotating neutron stars are most promising to find such disks. Searching for the cold and warm debris of old fallback disks, we carried out Herschel PACS (70 μ\mum, 160 μ\mum) and Spitzer IRAC (3.6 μ\mum, 4.5 μ\mum) observations of eight slowly rotating (P311P\approx 3 - 11 s) nearby (<1<1 kpc) isolated neutron stars. Herschel detected 160 μ\mum emission (>5σ>5\sigma) at locations consistent with the positions of the neutron stars RX J0806.4-4123 and RX J2143.0+0654. No other significant infrared emission was detected from the eight neutron stars. We estimate probabilities of 63%, 33% and 3% that, respectively, none, one, or both Herschel PACS 160 μ\mum detections are unrelated excess sources due to background source confusion or an interstellar cirrus. If the 160 μ\mum emission is indeed related to cold (10 K to 22 K) dust around the neutron stars, this dust is absorbing and re-emitting 10\sim 10% to 20\sim 20% of the neutron stars' X-rays. Such high efficiencies would be at least three orders of magnitude larger than the efficiencies of debris disks around nondegenerate stars. While thin dusty disks around the neutron stars can be excluded as counterparts of the 160 μ\mum emission, dusty asteroid belts constitute a viable option.Comment: 22 pages, 26 Figures, 5 tables; accepted for publication in ApJ

    Phase diagram of the excitonic insulator

    Get PDF
    Motivated by recent experiments, which give strong evidence for an excitonic insulating phase in TmSe0.45Te0.55\rm TmSe_{0.45}Te_{0.55}, we developed a scheme to quantitatively construct, for generic two-band models, the phase diagram of an excitonic insulator. As a first application of our approach, we calculated the phase diagram for an effective mass two-band model with long-range Coulomb interaction. The shielded potential approximation is used to derive a generalized gap equation controlling for positive (negative) energy gaps the transition from a semi-conducting (semi-metallic) phase to an insulating phase. Numerical results,obtained within the quasi-static approximation, show a steeple-like phase diagram in contrast to long-standing expectations.Comment: 2 pages, 1 figure, SCES'05, accepted for publication in Physica

    Risico-analyse in de kustzone

    Get PDF

    Transparent, explainable, and accountable AI for robotics

    Get PDF
    To create fair and accountable AI and robotics, we need precise regulation and better methods to certify, explain, and audit inscrutable systems

    On the Formation Height of the SDO/HMI Fe 6173 Doppler Signal

    Full text link
    The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) is designed to study oscillations and the mag- netic field in the solar photosphere. It observes the full solar disk in the Fe I absorption line at 6173\AA . We use the output of a high-resolution 3D, time- dependent, radiation-hydrodynamic simulation based on the CO5BOLD code to calculate profiles F({\lambda},x,y,t) for the Fe I 6173{\AA} line. The emerging profiles F({\lambda},x,y,t) are multiplied by a representative set of HMI filter transmission profiles R_i({\lambda},1 \leq i \leq 6) and filtergrams I_i(x,y,t;1 \leq i \leq 6) are constructed for six wavelengths. Doppler velocities V_HMI(x,y,t) are determined from these filtergrams using a simplified version of the HMI pipeline. The Doppler velocities are correlated with the original velocities in the simulated atmosphere. The cross- correlation peaks near 100 km, suggesting that the HMI Doppler velocity signal is formed rather low in the solar atmosphere. The same analysis is performed for the SOHO/MDI Ni I line at 6768\AA . The MDI Doppler signal is formed slightly higher at around 125 km. Taking into account the limited spatial resolution of the instruments, the apparent formation height of both the HMI and MDI Doppler signal increases by 40 to 50 km. We also study how uncertainties in the HMI filter-transmission profiles affect the calculated velocities.Comment: 15 pages, 11 Figure

    Evolution of population with sexual and asexual reproduction in changing environment

    Full text link
    Using a lattice model based on Monte Carlo simulations, we study the role of the reproduction pattern on the fate of an evolving population. Each individual is under the selection pressure from the environment and random mutations. The habitat ("climate") is changing periodically. Evolutions of populations following two reproduction patterns are compared, asexual and sexual. We show, via Monte Carlo simulations, that sexual reproduction by keeping more diversified populations gives them better chances to adapt themselves to the changing environment. However, in order to obtain a greater chance to mate, the birth rate should be high. In the case of low birth rate and high mutation probability there is a preference for the asexual reproduction.Comment: 11 pages including figs., for Int. J. Mod. Phys. C 15, issue 2 (2004

    Mobility gap in intermediate valent TmSe

    Full text link
    The infrared optical conductivity of intermediate valence compound TmSe reveals clear signatures for hybridization of light dd- and heavy f-electronic states with m* ~ 1.6 m_0 and m* ~ 16 m_0, respectively. At moderate and high temperatures, the metal-like character of the heavy carriers dominate the low-frequency response while at low temperatures (T_N < T < 100 K) a gap-like feature is observed in the conductivity spectra below 10 meV which is assigned to be a mobility gap due to localization of electrons on local Kondo singlets, rather than a hybridization gap in the density of states

    Sharp lines in the absorption edge of EuTe and Pb0.1_{0.1}Eu0.9_{0.9}Te in high magnetic fields

    Full text link
    The optical absorption spectra in the region of the \fd transition energies of epitaxial layers of of EuTe and \PbEuTe, grown by molecular beam epitaxy, were studied using circularly polarized light, in the Faraday configuration. Under \sigmam polarization a sharp symmetric absorption line (full width at half-maximum 0.041 eV) emerges at the low energy side of the band-edge absorption, for magnetic fields intensities greater than 6 T. The absorption line shows a huge red shift (35 meV/T) with increasing magnetic fields. The peak position of the absorption line as a function of magnetic field is dominated by the {\em d-f} exchange interaction of the excited electron and the \Euion spins in the lattice. The {\em d-f} exchange interaction energy was estimated to be JdfS=0.15±0.01J_{df}S=0.15\pm 0.01 eV. In \PbEuTe the same absorption line is detected, but it is broader, due to alloy disorder, indicating that the excitation is localized within a finite radius. From a comparison of the absorption spectra in EuTe and \PbEuTe the characteristic radius of the excitation is estimated to be 10\sim 10\AA.Comment: Journal of Physics: Condensed Matter (2004, at press
    corecore