1,559 research outputs found
Massive stars in massive clusters - IV. Disruption of clouds by momentum-driven winds
We examine the effect of momentum-driven OB-star stellar winds on a parameter space of simulated turbulent giant molecular clouds using smoothed particle hydrodynamic simulations. By comparison with identical simulations in which ionizing radiation was included instead of winds, we show that momentum-driven winds are considerably less effective in disrupting their host clouds than are H ii regions. The wind bubbles produced are smaller and generally smoother than the corresponding ionization-driven bubbles. Winds are roughly as effective in destroying the very dense gas in which the O stars are embedded, and thus shutting down the main regions of star-forming activity in the model clouds. However, their influence falls off rapidly with distance from the sources, so they are not as good at sweeping up dense gas and triggering star formation further out in the clouds. As a result, their effect on the star formation rate and efficiency is generally more negative than that of ionization, if they exert any effect at all.Peer reviewe
Protoplanetary disc evolution affected by star-disc interactions in young stellar clusters
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.Most stars form in a clustered environment. Therefore, it is important to assess how this environment influences the evolution of protoplanetary discs around young stars. In turn, this affects their ability to produce planets and ultimately life. We present here for the first time 3D smoothed particle hydrodynamics/N-body simulations that include both the hydrodynamical evolution of the discs around their natal stars, as well as the dynamics of the stars themselves. The discs are viscously evolving, accreting mass on to the central star and spreading. We find penetrating encounters to be very destructive for the discs as in previous studies, although the frequency of such encounters is low. We also find, however, that encounter influence the disc radii more strongly than other disc properties such as the disc mass. The disc sizes are set by the competition between viscous spreading and the disruptive effect of encounters. As discs spread, encounters become more and more important. In the regime of rapid spreading, encounters simply truncate the discs, stripping the outer portions. In the opposite regime, we find that the effect of many distant encounters is able to limit the disc size. Finally, we predict from our simulations that disc sizes are limited by encounters at stellar densities exceeding ∼2–3 × 103 pc−2.Peer reviewe
Molecular Aspects of Secretory Granule Exocytosis by Neurons and Endocrine Cells
Neuronal communication and endocrine signaling are fundamental for integrating
the function of tissues and cells in the body. Hormones released by endocrine
cells are transported to the target cells through the circulation. By contrast, transmitter
release from neurons occurs at specialized intercellular junctions, the synapses.
Nevertheless, the mechanisms by which signal molecules are synthesized,
stored, and eventually secreted by neurons and endocrine cells are very similar.
Neurons and endocrine cells have in common two different types of secretory
organelles, indicating the presence of two distinct secretory pathways. The synaptic
vesicles of neurons contain excitatory or inhibitory neurotransmitters, whereas the
secretory granules (also referred to as dense core vesicles, because of their electron
dense content) are filled with neuropeptides and amines. In endocrine cells, peptide
hormones and amines predominate in secretory granules. The function and content
of vesicles, which share antigens with synaptic vesicles, are unknown for most
endocrine cells. However, in B cells of the pancreatic islet, these vesicles contain
GABA, which may be involved in intrainsular signaling.'
Exocytosis of both synaptic vesicles and secretory granules is controlled by
cytoplasmic calcium. However, the precise mechanisms of the subsequent steps,
such as docking of vesicles and fusion of their membranes with the plasma membrane,
are still incompletely understood. This contribution summarizes recent observations
that elucidate components in neurons and endocrine cells involved in
exocytosis. Emphasis is put on the intracellular aspects of the release of secretory
granules that recently have been analyzed in detail
Experimental determination of the Compton profile of C60 through binary encounter electron spectroscopy
The method of 0° electron spectroscopy was used to study binary encounter electrons resulting from hard collisions between 1.5 MeV/u C6+ ions and the electrons in a C60 vapor target. The Compton profile of C60 was then extracted from the electron spectra using an impulse approximation treatment. The experimental results are in excellent agreement with theoretical Compton profiles of C60. The C60 Compton profile is compared with that of atomic carbon, as well as those for graphite and diamond.Peer reviewe
Killer lymphocytes use granulysin, perforin and granzymes to kill intracellular parasites
Protozoan infections are a serious global health problem1, 2. Natural killer (NK) cells and cytolytic T lymphocytes (CTLs) eliminate pathogen-infected cells by releasing cytolytic granule contents—granzyme (Gzm) proteases and the pore-forming perforin (PFN)—into the infected cell3. However, these cytotoxic molecules do not kill intracellular parasites. CD8+ CTLs protect against parasite infections in mice primarily by secreting interferon (IFN)-γ4, 5, 6, 7, 8, 9, 10. However, human, but not rodent, cytotoxic granules contain the antimicrobial peptide granulysin (GNLY), which selectively destroys cholesterol-poor microbial membranes11, 12, 13, 14, and GNLY, PFN and Gzms rapidly kill intracellular bacteria15. Here we show that GNLY delivers Gzms into three protozoan parasites (Trypanosoma cruzi, Toxoplasma gondii and Leishmania major), in which the Gzms generate superoxide and inactivate oxidative defense enzymes to kill the parasite. PFN delivers GNLY and Gzms into infected cells, and GNLY then delivers Gzms to the intracellular parasites. Killer cell–mediated parasite death, which we term 'microbe-programmed cell death' or 'microptosis', is caspase independent but resembles mammalian apoptosis, causing mitochondrial swelling, transmembrane potential dissipation, membrane blebbing, phosphatidylserine exposure, DNA damage and chromatin condensation. GNLY-transgenic mice are protected against infection by T. cruzi and T. gondii, and survive infections that are lethal to wild-type mice. Thus, GNLY-, PFN- and Gzm-mediated elimination of intracellular protozoan parasites is an unappreciated immune defense mechanism
Squeezed between shells? On the origin of the Lupus I molecular cloud. - II. APEX CO and GASS HI observations
Accepted for publication in a future issue of Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.Context. The Lupus I cloud is found between the Upper-Scorpius (USco) and the Upper-Centaurus-Lupus (UCL) sub-groups of the Scorpius-Centaurus OB-association, where the expanding USco H I shell appears to interact with a bubble currently driven by the winds of the remaining B-stars of UCL. Aims. We investigate if the Lupus I molecular could have formed in a colliding flow, and in particular, how the kinematics of the cloud might have been influenced by the larger scale gas dynamics. Methods. We performed APEX 13CO(2–1) and C 18O(2–1) line observations of three distinct parts of Lupus I that provide kinematic information on the cloud at high angular and spectral resolution. We compare those results to the atomic hydrogen data from the GASS H i survey and our dust emission results presented in the previous paper. Based on the velocity information, we present a geometric model for the interaction zone between the USco shell and the UCL wind bubble. Results. We present evidence that the molecular gas of Lupus I is tightly linked to the atomic material of the USco shell. The CO emission in Lupus I is found mainly at velocities between vLSR = 3–6 km s−1 which is in the same range as the H i velocities. Thus, the molecular cloud is co-moving with the expanding USco atomic H i shell. The gas in the cloud shows a complex kinematic structure with several line-of-sight components that overlay each other. The non-thermal velocity dispersion is in the transonic regime in all parts of the cloud and could be injected by external compression. Our observations and the derived geometric model agree with a scenario where Lupus I is located in the interaction zone between the USco shell and the UCL wind bubble. Conclusions. The kinematics observations are consistent with a scenario where the Lupus I cloud formed via shell instabilities. The particular location of Lupus I between USco and UCL suggests that counter-pressure from the UCL wind bubble and pre-existing density enhancements, perhaps left over from the gas stream that formed the stellar subgroups, may have played a role in its formation.Peer reviewedFinal Accepted Versio
Interactions between brown-dwarf binaries and Sun-like stars
Several mechanisms have been proposed for the formation of brown dwarfs, but
there is as yet no consensus as to which -- if any -- are operative in nature.
Any theory of brown dwarf formation must explain the observed statistics of
brown dwarfs. These statistics are limited by selection effects, but they are
becoming increasingly discriminating. In particular, it appears (a) that brown
dwarfs that are secondaries to Sun-like stars tend to be on wide orbits, a\ga
100\,{\rm AU} (the Brown Dwarf Desert), and (b) that these brown dwarfs have a
significantly higher chance of being in a close (a\la 10\,{\rm AU}) binary
system with another brown dwarf than do brown dwarfs in the field. This then
raises the issue of whether these brown dwarfs have formed {\it in situ}, i.e.
by fragmentation of a circumstellar disc; or have formed elsewhere and
subsequently been captured. We present numerical simulations of the purely
gravitational interaction between a close brown-dwarf binary and a Sun-like
star. These simulations demonstrate that such interactions have a negligible
chance () of leading to the close brown-dwarf binary being captured by
the Sun-like star. Making the interactions dissipative by invoking the
hydrodynamic effects of attendant discs might alter this conclusion. However,
in order to explain the above statistics, this dissipation would have to favour
the capture of brown-dwarf binaries over single brown-dwarfs, and we present
arguments why this is unlikely. The simplest inference is that most brown-dwarf
binaries -- and therefore possibly also most single brown dwarfs -- form by
fragmentation of circumstellar discs around Sun-like protostars, with some of
them subsequently being ejected into the field.Comment: 10 pages, 8 figures, Accepted for publication in Astrophysics and
Space Scienc
Excitation and relaxation in atom-cluster collisions
Electronic and vibrational degrees of freedom in atom-cluster collisions are
treated simultaneously and self-consistently by combining time-dependent
density functional theory with classical molecular dynamics. The gradual change
of the excitation mechanisms (electronic and vibrational) as well as the
related relaxation phenomena (phase transitions and fragmentation) are studied
in a common framework as a function of the impact energy (eV...MeV). Cluster
"transparency" characterized by practically undisturbed atom-cluster
penetration is predicted to be an important reaction mechanism within a
particular window of impact energies.Comment: RevTeX (4 pages, 4 figures included with epsf
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
Evidence for the h_b(1P) meson in the decay Upsilon(3S) --> pi0 h_b(1P)
Using a sample of 122 million Upsilon(3S) events recorded with the BaBar
detector at the PEP-II asymmetric-energy e+e- collider at SLAC, we search for
the spin-singlet partner of the P-wave chi_{bJ}(1P) states in the
sequential decay Upsilon(3S) --> pi0 h_b(1P), h_b(1P) --> gamma eta_b(1S). We
observe an excess of events above background in the distribution of the recoil
mass against the pi0 at mass 9902 +/- 4(stat.) +/- 2(syst.) MeV/c^2. The width
of the observed signal is consistent with experimental resolution, and its
significance is 3.1sigma, including systematic uncertainties. We obtain the
value (4.3 +/- 1.1(stat.) +/- 0.9(syst.)) x 10^{-4} for the product branching
fraction BF(Upsilon(3S)-->pi0 h_b) x BF(h_b-->gamma eta_b).Comment: 8 pages, 4 postscript figures, submitted to Phys. Rev. D (Rapid
Communications
- …
