778 research outputs found
Self-interacting dark matter and Higgs bosons in the SU(3)_C x SU(3)_L x U(1)_N model with right-handed neutrinos
We investigate the possibility that dark matter could be made from CP-even
and CP- odd Higgs bosons in the SU(3)_C X SU(3)_L X U(1)_N (3-3-1) model with
right-handed neutrinos. This self-interacting dark matters are stable without
imposing of new symmetry and should be weak-interacting.Comment: 7 pages, Latex, To appear in Europhys. Let
Halo detection via large-scale Bayesian inference
We present a proof-of-concept of a novel and fully Bayesian methodology
designed to detect halos of different masses in cosmological observations
subject to noise and systematic uncertainties. Our methodology combines the
previously published Bayesian large-scale structure inference algorithm, HADES,
and a Bayesian chain rule (the Blackwell-Rao Estimator), which we use to
connect the inferred density field to the properties of dark matter halos. To
demonstrate the capability of our approach we construct a realistic galaxy mock
catalogue emulating the wide-area 6-degree Field Galaxy Survey, which has a
median redshift of approximately 0.05. Application of HADES to the catalogue
provides us with accurately inferred three-dimensional density fields and
corresponding quantification of uncertainties inherent to any cosmological
observation. We then use a cosmological simulation to relate the amplitude of
the density field to the probability of detecting a halo with mass above a
specified threshold. With this information we can sum over the HADES density
field realisations to construct maps of detection probabilities and demonstrate
the validity of this approach within our mock scenario. We find that the
probability of successful of detection of halos in the mock catalogue increases
as a function of the signal-to-noise of the local galaxy observations. Our
proposed methodology can easily be extended to account for more complex
scientific questions and is a promising novel tool to analyse the cosmic
large-scale structure in observations.Comment: 17 pages, 13 figures. Accepted for publication in MNRAS following
moderate correction
Cosmic (super)string constraints from 21 cm radiation
We calculate the contribution of cosmic strings arising from a phase
transition in the early universe, or cosmic superstrings arising from brane
inflation, to the cosmic 21 cm power spectrum at redshifts z > 30. Future
experiments can exploit this effect to constrain the cosmic string tension Gu
and probe virtually the entire brane inflation model space allowed by current
observations. Although current experiments with a collecting area of ~ 1 km^2
will not provide any useful constraints, future experiments with a collecting
area of 10^4-10^6 km^2 covering the cleanest 10% of the sky can in principle
constrain cosmic strings with tension Gu > 10^(-10) to 10^(-12)
(superstring/phase transition mass scale >10^13 GeV).Comment: Accepted for publication in PR
Application of Monte Carlo Algorithms to the Bayesian Analysis of the Cosmic Microwave Background
Power spectrum estimation and evaluation of associated errors in the presence
of incomplete sky coverage; non-homogeneous, correlated instrumental noise; and
foreground emission is a problem of central importance for the extraction of
cosmological information from the cosmic microwave background. We develop a
Monte Carlo approach for the maximum likelihood estimation of the power
spectrum. The method is based on an identity for the Bayesian posterior as a
marginalization over unknowns. Maximization of the posterior involves the
computation of expectation values as a sample average from maps of the cosmic
microwave background and foregrounds given some current estimate of the power
spectrum or cosmological model, and some assumed statistical characterization
of the foregrounds. Maps of the CMB are sampled by a linear transform of a
Gaussian white noise process, implemented numerically with conjugate gradient
descent. For time series data with N_{t} samples, and N pixels on the sphere,
the method has a computational expense $KO[N^{2} +- N_{t} +AFw-log N_{t}],
where K is a prefactor determined by the convergence rate of conjugate gradient
descent. Preconditioners for conjugate gradient descent are given for scans
close to great circle paths, and the method allows partial sky coverage for
these cases by numerically marginalizing over the unobserved, or removed,
region.Comment: submitted to Ap
Dark matter from the scalar sector of 3-3-1 models without exotic electric charges
We show that three SU(2) singlet neutral scalars (two CP-even and one CP-odd)
in the spectrum of models based on the gauge symmetry SU(3)_c X SU(3)_L X
U(1)_X, which do not contain exotic electric charges, are realistic candidates
for thermally generated self-interacting dark matter in the Universe, a type of
dark matter that has been recently proposed in order to overcome some
difficulties of collisionless cold dark matter models at the galactic scale.
These candidates arise without introducing a new mass scale in the model and/or
without the need for a discrete symmetry to stabilize them, but at the expense
of tuning several combinations of parameters of the scalar potential.Comment: RevTeX, 11 pages. v2: typos corrected, one reference added. v3:
clarifications added, four more references added. To appear in Europhys. Let
- …
