6,116 research outputs found

    Fractionalization in a square-lattice model with time-reversal symmetry

    Full text link
    We propose a two-dimensional time-reversal invariant system of essentially non-interacting electrons on a square lattice that exhibits configurations with fractional charges e/2. These are vortex-like topological defects in the dimerization order parameter describing spatial modulation in the electron hopping amplitudes. Charge fractionalization is established by a simple counting argument, analytical calculation within the effective low-energy theory, and by an exact numerical diagonalization of the lattice Hamiltonian. We comment on the exchange statistics of fractional charges and possible realizations of the system.Comment: 4 pages, 3 figures, RevTex 4. (v2) improved discussion of lattice effects and confinement; clearer figure

    Aging near rough and smooth boundaries in colloidal glasses

    Full text link
    We use confocal microscopy to study the aging of a bidisperse colloidal glass near rough and smooth boundaries. Near smooth boundaries, the particles form layers, and particle motion is dramatically slower near the boundary as compared to the bulk. Near rough boundaries, the layers nearly vanish, and particle motion is nearly identical to that of the bulk. The gradient in dynamics near the boundaries is demonstrated to be a function of the gradient in structure for both types of boundaries.Our observations show that wall-induced layer structures strongly influence aging.Comment: 8 pages, 7 figure

    Survey of classical density functionals for modelling hydrogen physisorption at 77 K

    Get PDF
    This work surveys techniques based on classical density functionals for modeling the quantum dispersion of physisorbed hydrogen at 77 K. Two such techniques are examined in detail. The first is based on the "open ring approximation" (ORA) of Broukhno et al., and it is compared with a technique based on the semiclassical approximation of Feynman and Hibbs (FH). For both techniques, a standard classical density functional is used to model hydrogen molecule-hydrogen molecule (i.e., excess) interactions. The three-dimensional (3D) quantum harmonic oscillator (QHO) system and a model of molecular hydrogen adsorption into a graphitic slit pore at 77 K are used as benchmarks. Density functional results are compared with path-integral Monte Carlo simulations and with exact solutions for the 3D QHO system. It is found that neither of the density functional treatments are entirely satisfactory. However, for hydrogen physisorption studies at 77 K the ORA based technique is generally superior to the FH based technique due to a fortunate cancellation of errors in the density functionals used. But, if more accurate excess functionals are used, the FH technique would be superior

    Topology of the Universe: background and recent observational approaches

    Get PDF
    Is the Universe (a spatial section thereof) finite or infinite? Knowing the global geometry of a Friedmann-Lema\^{\i}tre (FL) universe requires knowing both its curvature and its topology. A flat or hyperbolic (``open'') FL universe is {\em not} necessarily infinite in volume. Multiply connected flat and hyperbolic models are, in general, as consistent with present observations on scales of 1-20{\hGpc} as are the corresponding simply connected flat and hyperbolic models. The methods of detecting multiply connected models (MCM's) are presently in their pioneering phase of development and the optimal observationally realistic strategy is probably yet to be calculated. Constraints against MCM's on ~1-4 h^{-1} Gpc scales have been claimed, but relate more to inconsistent assumptions on perturbation statistics rather than just to topology. Candidate 3-manifolds based on hypothesised multiply imaged objects are being offered for observational refutation. The theoretical and observational sides of this rapidly developing subject have yet to make any serious contact, but the prospects of a significant detection in the coming decade may well propel the two together.Comment: 5 pages, proceedings of the Workshop ``Cosmology: Observations Confront Theories,'' 11-17 Jan 1999, IIT Kharagpur, West Bengal, to appear in Pramana - Journal of Physic

    Supernovae observations and cosmic topology

    Full text link
    Two fundamental questions regarding our description of the Universe concern the geometry and topology of its 3-dimensional space. While geometry is a local characteristic that gives the intrinsic curvature, topology is a global feature that characterizes the shape and size of the 3-space. The geometry constrains, but does not dictate the the spatial topology. We show that, besides determining the spatial geometry, the knowledge of the spatial topology allows to place tight constraints on the density parameters associated with dark matter (Ωm\Omega_m) and dark energy (ΩΛ\Omega_{\Lambda}). By using the Poincar\'e dodecahedral space as the observable spatial topology, we reanalyze the current type Ia supenovae (SNe Ia) constraints on the density parametric space ΩmΩΛ\Omega_{m} - \Omega_{\Lambda}. From this SNe Ia plus cosmic topology analysis, we found best fit values for the density parameters, which are in agreement with a number of independent cosmological observations.Comment: 5 pages, 2 figures. Minor changes and a ref. added. To appear in A&A (2006

    The United States Chiropractic Workforce: An alternative or complement to primary care?

    Get PDF
    UnlabelledBackgroundIn the United States (US) a shortage of primary care physicians has become evident. Other health care providers such as chiropractors might help address some of the nation's primary care needs simply by being located in areas of lesser primary care resources. Therefore, the purpose of this study was to examine the distribution of the chiropractic workforce across the country and compare it to that of primary care physicians.MethodsWe used nationally representative data to estimate the per 100,000 capita supply of chiropractors and primary care physicians according to the 306 predefined Hospital Referral Regions. Multiple variable Poisson regression was used to examine the influence of population characteristics on the supply of both practitioner-types.ResultsAccording to these data, there are 74,623 US chiropractors and the per capita supply of chiropractors varies more than 10-fold across the nation. Chiropractors practice in areas with greater supply of primary care physicians (Pearson's correlation 0.17, p-value < 0.001) and appear to be more responsive to market conditions (i.e. more heavily influenced by population characteristics) in regards to practice location than primary care physicians.ConclusionThese findings suggest that chiropractors practice in areas of greater primary care physician supply. Therefore chiropractors may be functioning in more complementary roles to primary care as opposed to an alternative point of access

    A test of the Poincare dodecahedral space topology hypothesis with the WMAP CMB data

    Full text link
    It has been suggested by Roukema and coworkers (hereafter R04) that the topology of the Universe as probed by the ``matched circles'' method using the first year release of the WMAP CMB data, might be that of the Poincar\'e dodecahedral space (PDS) model. An excess in the correlation of the ``identified circles'' was reported by R04, for circles of angular radius of ~11 deg for a relative phase twist -36deg, hinting that this could be due to a Clifford translation, if the hypothesized model were true. R04 did not however specify the statistical significance of the correlation signal. We investigate the statistical significance of the signal using Monte Carlo CMB simulations in a simply connected Universe, and present an updated analysis using the three-year WMAP data. We find that our analyses of the first and three year WMAP data provide results that are consistent with the simply connected space at a confidence level as low as 68%.Comment: 8 pages, 6 figures, typo corrected/replaced to match version published in A&
    corecore