149 research outputs found
Lattice dynamics of MgSiO perovskite (bridgmanite) studied by inelastic x-ray scattering and ab initio calculations
We have determined the lattice dynamics of MgSiO perovskite (bridgmanite)
by a combination of single-crystal inelastic x-ray scattering and ab initio
calculations. We observe a remarkable agreement between experiment and theory,
and provide accurate results for phonon dispersion relations, phonon density of
states and the full elasticity tensor. The present work constitutes an
important milestone to extend this kind of combined studies to extreme
conditions of pressure and temperature, directly relevant for the physics and
the chemistry of Earth's lower mantle
X-ray Observations and Infrared Identification of the Transient 7.8 s X-ray Binary Pulsar XTE J1829-098
XMM-Newton and Chandra observations of the transient 7.8 s pulsar XTE
J1829-098 are used to characterize its pulse shape and spectrum, and to
facilitate a search for an optical or infrared counterpart. In outburst, the
absorbed, hard X-ray spectrum with Gamma = 0.76+/-0.13 and N_H = (6.0+/-0.6) x
10^{22} cm^{-2} is typical of X-ray binary pulsars. The precise Chandra
localization in a faint state leads to the identification of a probable
infrared counterpart at R.A. = 18h29m43.98s, decl. = -09o51'23.0" (J2000.0)
with magnitudes K=12.7, H=13.9, I>21.9, and R>23.2. If this is a highly
reddened O or B star, we estimate a distance of 10 kpc, at which the maximum
observed X-ray luminosity is 2x10^{36} ergs s^{-1}, typical of Be X-ray
transients or wind-fed systems. The minimum observed luminosity is
3x10^{32}(d/10 kpc)^2 ergs s^{-1}. We cannot rule out the possibility that the
companion is a red giant. The two known X-ray outbursts of XTE J1829-098 are
separated by ~1.3 yr, which may be the orbital period or a multiple of it, with
the neutron star in an eccentric orbit. We also studied a late M-giant
long-period variable that we found only 9" from the X-ray position. It has a
pulsation period of ~1.5 yr, but is not the companion of the X-ray source.Comment: 6 pages, 7 figures. To appear in The Astrophysical Journa
High-frequency dynamics in the near-surface region studied by inelastic x-ray scattering: The case of liquid indium
Inelastic x-ray scattering in grazing angle geometry provides a novel tool for studying the surface and bulk lattice dynamics in a single experiment by varying the incidence angle around the critical angle of total reflection. At very small incidence angles (below the critical angle), it is possible to study the collective dynamics in a subsurface region of a few nanometres at interatomic length and time scales. An experimental study on liquid indium in the near-surface region is presented here and the results are analysed within a theoretical framework, based on classical hydrodynamics for the height-height fluctuations (capillary waves and non-propagating fluctuations) and generalized hydrodynamics for the bulk density fluctuations. The investigation reveals the presence of capillary waves in the inelastic x-ray spectra as an additional contribution at zero-energy transfer and a modification of the bulk density fluctuation contribution. A longer structural relaxation time and a larger longitudinal viscosity with respect to bulk indium are observed, similarly to related studies in confined liquids. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
Blockchain for the circular economy: Theorizing blockchain\u27s role in the transition to a circular economy through an empirical investigation
Blockchain is increasingly lauded as an enabler of the transition to a circular economy. While there is considerable conceptual research and some empirical studies on this phenomenon, scholars have yet to develop a theoretical model of blockchain\u27s role in this transition. Grounded in the sustainability transition literature, this paper addresses this gap through the following research question: What role does blockchain play in the transition to a circular economy? Following an abductive approach, we conducted interviews with ground-level experts implementing blockchain innovations for the circular economy across Europe and the United States. Through a thematic analysis, we derived a theoretical model of the relationships among (1) drivers and barriers of the transition to a circular economy, (2) blockchain innovation for the circular economy, (3) technical challenges of blockchain, and (4) the circular economy. While blockchain plays a moderating role, interviewees considered it only an infrastructural resource rather than a panacea
Herschel/HIFI observations of interstellar OH+ and H2O+ towards W49N: a probe of diffuse clouds with a small molecular fraction
We report the detection of absorption by interstellar hydroxyl cations and
water cations, along the sight-line to the bright continuum source W49N. We
have used Herschel's HIFI instrument, in dual beam switch mode, to observe the
972 GHz N = 1 - 0 transition of OH+ and the 1115 GHz 1(11) - 0(00) transition
of ortho-H2O+. The resultant spectra show absorption by ortho-H2O+, and strong
absorption by OH+, in foreground material at velocities in the range 0 to 70
km/s with respect to the local standard of rest. The inferred OH+/H2O+
abundance ratio ranges from ~ 3 to ~ 15, implying that the observed OH+ arises
in clouds of small molecular fraction, in the 2 - 8% range. This conclusion is
confirmed by the distribution of OH+ and H2O+ in Doppler velocity space, which
is similar to that of atomic hydrogen, as observed by means of 21 cm absorption
measurements, and dissimilar from that typical of other molecular tracers. The
observed OH+/H abundance ratio of a few E-8 suggests a cosmic ray ionization
rate for atomic hydrogen of (0.6 - 2.4) E-16 s-1, in good agreement with
estimates inferred previously for diffuse clouds in the Galactic disk from
observations of interstellar H3+ and other species.Comment: Accepted for publication in A&A Letter
Detection of interstellar oxidaniumyl: abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334
We identify a prominent absorption feature at 1115 GHz, detected in first
HIFI spectra towards high-mass star-forming regions, and interpret its
astrophysical origin. The characteristic hyperfine pattern of the H2O+
ground-state rotational transition, and the lack of other known low-energy
transitions in this frequency range, identifies the feature as H2O+ absorption
against the dust continuum background and allows us to derive the velocity
profile of the absorbing gas. By comparing this velocity profile with velocity
profiles of other tracers in the DR21 star-forming region, we constrain the
frequency of the transition and the conditions for its formation. In DR21, the
velocity distribution of H2O+ matches that of the [CII] line at 158\mu\m and of
OH cm-wave absorption, both stemming from the hot and dense clump surfaces
facing the HII-region and dynamically affected by the blister outflow. Diffuse
foreground gas dominates the absorption towards Sgr B2. The integrated
intensity of the absorption line allows us to derive lower limits to the H2O+
column density of 7.2e12 cm^-2 in NGC 6334, 2.3e13 cm^-2 in DR21, and 1.1e15
cm^-2 in Sgr B2.Comment: Accepted for publication in A&
First principles calculation and experimental investigation of lattice dynamics in the rare earth pyrochlores R2Ti2O7 (R=Tb, Dy, Ho)
We present a model of the lattice dynamics of the rare earth titanate pyrochlores R2Ti2O7 (R=Tb, Dy, Ho), which are important materials in the study of frustrated magnetism. The phonon modes are obtained by density functional calculations, and these predictions are verified by comparison with scattering experiments. Single crystal inelastic neutron scattering is used to measure acoustic phonons along high symmetry directions for R=Tb, Ho; single crystal inelastic x-ray scattering is used to measure numerous optical modes throughout the Brillouin zone for R=Ho; and powder inelastic neutron scattering is used to estimate the phonon density of states for R=Tb, Dy, Ho. Good agreement between the calculations and all measurements is obtained, meaning that the energies and symmetries of the phonons in these materials can be regarded as understood. The knowledge of the phonon spectrum is important for understanding spin-lattice interactions, and can be expected to be transferred readily to other members of the series to guide the search for unconventional magnetic excitations
In-between Bragg reflections: Thermal diffuse scattering and vibrational spectroscopy with x-rays
In the last decade diffuse scattering studies re-gained their place in the domain of lattice dynamics studies. The use of thermal diffuse scattering becomes particularly efficient when coupled with vibrational spectroscopy, where inelastic x-ray scattering can be advantageous compared to inelastic neutron scattering, and state-of-the-art ab initio calculations. We present a brief summary of the experimental and theoretical background, give an overview of the principal experimental implementations, and discuss a representative set of examples of such a combined approach
High-frequency subsurface and bulk dynamics of liquid indium
We have performed bulk and surface-sensitive inelastic x-ray scattering experiments on liquid indium with 3 meV energy resolution. The experimental data are well reproduced within a generalized hydrodynamic model including structural and microscopic relaxation processes. We find a longitudinal viscosity of 22 mPa s in the near-surface region compared to 7.4 mPa s in the bulk. The origin of the increase is associated with a slowing down of the collective dynamics in a subsurface region of 4.6 nm. © 2007 The American Physical Society
Optical multiband surface photometry of a sample of Seyfert galaxies. I. Large-scale morphology and local environment analysis of matched Seyfert and inactive galaxy samples
Parallel analysis of the large-scale morphology and local environment of
matched active and control galaxy samples plays an important role in studies of
the fueling of active galactic nuclei. We carry out a detailed morphological
characterization of a sample of 35 Seyfert galaxies and a matched sample of
inactive galaxies in order to compare the evidence of non-axisymmetric
perturbation of the potential and, in the second part of this paper, to be able
to perform a multicomponent photometric decomposition of the Seyfert galaxies.
We constructed contour maps, BVRcIc profiles of the surface brightness,
ellipticity, and position angle, as well as colour index profiles. We further
used colour index images, residual images, and structure maps, which helped
clarify the morphology of the galaxies. We studied the presence of close
companions using literature data. By straightening out the morphological status
of some of the objects, we derived an improved morphological classification and
built a solid basis for a further multicomponent decomposition of the Seyfert
sample. We report hitherto undetected (to our knowledge) structural components
in some Seyfert galaxies - a bar (Ark 479), an oval/lens (Mrk 595), rings (Ark
120, Mrk 376), a nuclear bar and ring (Mrk 352), and nuclear dust lanes (Mrk
590). We compared the large-scale morphology and local environment of the
Seyfert sample to those of the control one and found that (1) the two samples
show similar incidences of bars, rings, asymmetries, and close companions; (2)
the Seyfert bars are generally weaker than the bars of the control galaxies;
(3) the bulk of the two samples shows morphological evidence of
non-axisymmetric perturbations of the potential or close companions; (4) the
fueling of Seyfert nuclei is not directly related to the large-scale morphology
and local environment of their host galaxies.Comment: Accepted for publication in A&
- …
