1,386 research outputs found

    Thermodynamics of Delta resonances

    Full text link
    The thermodynamic potential of a system of pions and nucleons is computed including the piN interactions in the P33 channel. A consistent treatment of the width of the resonance in this channel, the Delta(1232) resonance, is explored in detail. In the low-density limit we recover the leading term of the virial expansion for the thermodynamic potential. An instructive diagrammatic interpretation of the contributions to the total baryon number is presented. Furthermore, we examine within a fireball model the consequences for the pion spectra in heavy-ion collisions at intermediate energies, including the effect of collective flow. A consistent treatment of the Delta width leads to a substantial enhancement of the pion yield at low momenta.Comment: 12 pages, 3 Postscript figures, LaTeX, elsart, epsfig, minor changes, references added, to be published in Physics Letters

    Manipulating biphotonic qutrits

    Get PDF
    Quantum information carriers with higher dimension than the canonical qubit offer significant advantages. However, manipulating such systems is extremely difficult. We show how measurement induced non-linearities can be employed to dramatically extend the range of possible transforms on biphotonic qutrits; the three level quantum systems formed by the polarisation of two photons in the same spatio-temporal mode. We fully characterise the biphoton-photon entanglement that underpins our technique, thereby realising the first instance of qubit-qutrit entanglement. We discuss an extension of our technique to generate qutrit-qutrit entanglement and to manipulate any bosonic encoding of quantum information.Comment: 4 pages, 4 figure

    Experimental demonstration of Shor's algorithm with quantum entanglement

    Get PDF
    Shor's powerful quantum algorithm for factoring represents a major challenge in quantum computation and its full realization will have a large impact on modern cryptography. Here we implement a compiled version of Shor's algorithm in a photonic system using single photons and employing the non-linearity induced by measurement. For the first time we demonstrate the core processes, coherent control, and resultant entangled states that are required in a full-scale implementation of Shor's algorithm. Demonstration of these processes is a necessary step on the path towards a full implementation of Shor's algorithm and scalable quantum computing. Our results highlight that the performance of a quantum algorithm is not the same as performance of the underlying quantum circuit, and stress the importance of developing techniques for characterising quantum algorithms.Comment: 4 pages, 5 figures + half-page additional online materia

    On the Thermodynamic Geometry and Critical Phenomena of AdS Black Holes

    Full text link
    In this paper, we study various aspects of the equilibrium thermodynamic state space geometry of AdS black holes. We first examine the Reissner-Nordstrom-AdS (RN-AdS) and the Kerr-AdS black holes. In this context, the state space scalar curvature of these black holes is analysed in various regions of their thermodynamic parameter space. This provides important new insights into the structure and significance of the scalar curvature. We further investigate critical phenomena, and the behaviour of the scalar curvature near criticality, for KN-AdS black holes in two mixed ensembles, introduced and elucidated in our earlier work arXiv:1002.2538 [hep-th]. The critical exponents are identical to those in the RN-AdS and Kerr-AdS cases in the canonical ensemble. This suggests an universality in the scaling behaviour near critical points of AdS black holes. Our results further highlight qualitative differences in the thermodynamic state space geometry for electric charge and angular momentum fluctuations of these.Comment: 1 + 37 Pages, LaTeX, includes 31 figures. A figure and a clarification added
    corecore