1,386 research outputs found
Thermodynamics of Delta resonances
The thermodynamic potential of a system of pions and nucleons is computed
including the piN interactions in the P33 channel. A consistent treatment of
the width of the resonance in this channel, the Delta(1232) resonance, is
explored in detail. In the low-density limit we recover the leading term of the
virial expansion for the thermodynamic potential. An instructive diagrammatic
interpretation of the contributions to the total baryon number is presented.
Furthermore, we examine within a fireball model the consequences for the pion
spectra in heavy-ion collisions at intermediate energies, including the effect
of collective flow. A consistent treatment of the Delta width leads to a
substantial enhancement of the pion yield at low momenta.Comment: 12 pages, 3 Postscript figures, LaTeX, elsart, epsfig, minor changes,
references added, to be published in Physics Letters
Manipulating biphotonic qutrits
Quantum information carriers with higher dimension than the canonical qubit
offer significant advantages. However, manipulating such systems is extremely
difficult. We show how measurement induced non-linearities can be employed to
dramatically extend the range of possible transforms on biphotonic qutrits; the
three level quantum systems formed by the polarisation of two photons in the
same spatio-temporal mode. We fully characterise the biphoton-photon
entanglement that underpins our technique, thereby realising the first instance
of qubit-qutrit entanglement. We discuss an extension of our technique to
generate qutrit-qutrit entanglement and to manipulate any bosonic encoding of
quantum information.Comment: 4 pages, 4 figure
Experimental demonstration of Shor's algorithm with quantum entanglement
Shor's powerful quantum algorithm for factoring represents a major challenge
in quantum computation and its full realization will have a large impact on
modern cryptography. Here we implement a compiled version of Shor's algorithm
in a photonic system using single photons and employing the non-linearity
induced by measurement. For the first time we demonstrate the core processes,
coherent control, and resultant entangled states that are required in a
full-scale implementation of Shor's algorithm. Demonstration of these processes
is a necessary step on the path towards a full implementation of Shor's
algorithm and scalable quantum computing. Our results highlight that the
performance of a quantum algorithm is not the same as performance of the
underlying quantum circuit, and stress the importance of developing techniques
for characterising quantum algorithms.Comment: 4 pages, 5 figures + half-page additional online materia
On the Thermodynamic Geometry and Critical Phenomena of AdS Black Holes
In this paper, we study various aspects of the equilibrium thermodynamic
state space geometry of AdS black holes. We first examine the
Reissner-Nordstrom-AdS (RN-AdS) and the Kerr-AdS black holes. In this context,
the state space scalar curvature of these black holes is analysed in various
regions of their thermodynamic parameter space. This provides important new
insights into the structure and significance of the scalar curvature. We
further investigate critical phenomena, and the behaviour of the scalar
curvature near criticality, for KN-AdS black holes in two mixed ensembles,
introduced and elucidated in our earlier work arXiv:1002.2538 [hep-th]. The
critical exponents are identical to those in the RN-AdS and Kerr-AdS cases in
the canonical ensemble. This suggests an universality in the scaling behaviour
near critical points of AdS black holes. Our results further highlight
qualitative differences in the thermodynamic state space geometry for electric
charge and angular momentum fluctuations of these.Comment: 1 + 37 Pages, LaTeX, includes 31 figures. A figure and a
clarification added
Production of resonances in a thermal model: invariant-mass spectra and balance functions
We present a calculation of the pi+ pi- invariant-mass correlations and the
pion balance functions in the single-freeze-out model. A satisfactory agreement
with the data for Au+Au collisions is found.Comment: Contribution to QM 2004 (4 pages, 2 figures
- …
