1,529 research outputs found

    Algorithm for in-flight gyroscope calibration

    Get PDF
    An optimal algorithm for the in-flight calibration of spacecraft gyroscope systems is presented. Special consideration is given to the selection of the loss function weight matrix in situations in which the spacecraft attitude sensors provide significantly more accurate information in pitch and yaw than in roll, such as will be the case in the Hubble Space Telescope mission. The results of numerical tests that verify the accuracy of the algorithm are discussed

    In-flight determination of spacecraft magnetic bias independent of attitude

    Get PDF
    A simple algorithm for the in-flight determination of the magnetic bias of a spacecraft is presented. The algorithm, developed for use during the Hubble Space Telescope mission, determines this bias independently of any attitude estimates and requires no spacecraft sensor data other than that from the spacecraft magnetometer(s). Estimates of the algorithm's accuracy and results from a number of numerical studies on the use of this algorithm are also presented

    Direct evidence for the magnetic ordering of Nd ions in NdMn2_2Si2_2 and NdMn2_2Ge2_2 by high resolution inelastic neutron scattering

    Full text link
    We have investigated the low energy nuclear spin excitations in NdMn2_2Si2_2 and NdMn2_2Ge2_2 by high resolution inelastic neutron scattering. Previous neutron diffraction investigations gave ambiguous results about Nd magnetic ordering at low temperatures. The present element-specific technique gave direct evidence for the magnetic ordering of Nd ions. We found considerable difference in the process of the Nd magnetic ordering at low temperature in NdMn2_2Si2_2 and NdMn2_2Ge2_2. Our results are consistent with those of magnetization and recent neutron diffraction measurements

    Electronic structure and magnetic properties of RMnX (R= Mg, Ca, Sr, Ba, Y; X= Si, Ge) studied by KKR method

    Full text link
    Electronic structure calculations, using the charge and spin self-consistent Korringa- Kohn-Rostoker (KKR) method, have been performed for several RRMnXX compounds (RR = Mg, Ca, Sr, Ba, Y; XX = Si, Ge) of the CeFeSi-type structure. The origin of their magnetic properties has been investigated emphasizing the role of the Mn sublattice. The significant influence of the Mn-Mn and Mn-XX interatomic distances on the Mn magnetic moment value is delineated from our computations, supporting many neutron diffraction data. We show that the marked change of μMn\mu_{Mn} with the Mn-Mn and Mn-XX distances resulted from a redistribution between spin-up and spin-down dd-Mn DOS rather than from different fillings of the Mn 3dd-shell. Bearing in mind that the neutron diffraction data reported for the RRMnXX compounds are rather scattered, the KKR computations of μMn\mu_{Mn} are in fair agreement with the experimental values. Comparing density of states near EFE_{F} obtained in different magnetic orderings, one can notice that the entitled RRMnXX systems seem to 'adapt' their magnetic structures to minimize the DOS in the vicinity of the Fermi level. Noteworthy, the SrMnGe antiferromagnet exhibits a pseudo-gap behaviour at EFE_{F}, suggesting anomalous electron transport properties. In addition, the F-AF transition occurring in the disordered La1x_{1-x}Yx_{x}MnSi alloy for the 0.8<x<10.8<x<1 range is well supported by the DOS features of La0.2_{0.2}Y0.8_{0.8}MnSi. In contrast to the investigated RRMnXX compounds, YFeSi was found to be non-magnetic, which is in excellent agreement with the experimental data.Comment: 10 pages + 14 figures, to appear in Eur. Phys. Jour.

    Elucidation of the metabolites of the novel psychoactive substance 4-methyl-N-ethyl-cathinone (4-MEC) in human urine and pooled liver microsomes by GC-MS &amp; LC-HR-MS/MS techniques and of its detectability by GC-MS or LC-MS(n) standard screening approaches

    Get PDF
    4-methyl-N-ethcathinone (4-MEC), the N-ethyl homologue of mephedrone, is a novel psychoactive substance of the beta-keto amphetamine (cathinone) group. The aim of the present work was to study the phase I and phase II metabolism of 4-MEC in human urine as well as in pooled human liver microsome (pHLM) incubations. The urine samples were worked up with and without enzymatic cleavage, the pHLM incubations by simple deproteinization. The metabolites were separated and identified by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-high resolution-tandem mass spectrometry (LC-HR-MS/MS). Based on the metabolites identified in urine and/or pHLM, the following metabolic pathways could be proposed: reduction of the keto group, N-deethylation, hydroxylation of the 4-methyl group followed by further oxidation to the corresponding 4-carboxy metabolite, and combinations of these steps. Glucuronidation could only be observed for the hydroxy metabolite. These pathways were similar to those described for the N-methyl homologue mephedrone and other related drugs. In pHLM, all phase I metabolites with the exception of the N-deethyl-dihydro isomers and the 4-carboxy-dihydro metabolite could be confirmed. Glucuronides could not be formed under the applied conditions. Although the taken dose was not clear, an intake of 4-MEC should be detectable in urine by the GC-MS and LC-MS(n) standard urine screening approaches at least after overdose

    Possible pseudogap behavior of electron doped high-temperature superconductors

    Full text link
    We have measured the low-energy quasiparticle excitation spectrum of the electron doped high-temperature superconductors (HTS) Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y) as a function of temperature and applied magnetic field using tunneling spectroscopy. At zero magnetic field, for these optimum doped samples no excitation gap is observed in the tunneling spectra above the transition temperature Tc. In contrast, below Tc for applied magnetic fields well above the resistively determined upper critical field, a clear excitation gap at the Fermi level is found which is comparable to the superconducting energy gap below Tc. Possible interpretations of this observation are the existence of a normal state pseudogap in the electron doped HTS or the existence of a spatially non-uniform superconducting state.Comment: 4 pages, 4 ps-figures included, to be published in Phys. Rev. B, Rapid Com

    Optogenetics and deep brain stimulation neurotechnologies

    Full text link
    Brain neural network is composed of densely packed, intricately wired neurons whose activity patterns ultimately give rise to every behavior, thought, or emotion that we experience. Over the past decade, a novel neurotechnique, optogenetics that combines light and genetic methods to control or monitor neural activity patterns, has proven to be revolutionary in understanding the functional role of specific neural circuits. We here briefly describe recent advance in optogenetics and compare optogenetics with deep brain stimulation technology that holds the promise for treating many neurological and psychiatric disorders

    Superconductivity in the YIr2Si2 and LaIr2Si2 Polymorphs

    Full text link
    We report on existence of superconductivity in YIr2Si2 and LaIr2Si2 compounds in relation to crystal structure. The two compounds crystallize in two structural polymorphs, both tetragonal. The high temperature polymorph (HTP) adopts the CaBe2Ge2-structure type (space group P4/nmm) while the low temperature polymorph (LTP) is of the ThCr2Si2 type (I4/mmm). By studying polycrystals prepared by arc melting we have observed that the rapidly cooled samples retain the HTP even at room temperature (RT) and below. Annealing such samples at 900C followed by slow cooling to RT provides the LTP. Both, the HTP and LTP were subsequently studied with respect to magnetism and superconductivity by electrical resistivity, magnetization, AC susceptibility and specific heat measurements. The HTP and LTP of both compounds respectively, behave as Pauli paramagnets. Superconductivity has been found exclusively in the HTP of both compounds below Tsc (= 2.52 K in YIr2Si2 and 1.24 K in LaIr2Si2). The relations of magnetism and superconductivity with the electronic and crystal structure are discussed with comparing experimental data with the results of first principles electronic structure calculations
    corecore