1,894 research outputs found
Fretting wear of TiN PVD coating under variable relative humidity conditions – development of a “composite” wear law
Fretting is defined as a small oscillatory displacement between two contacting bodies. The
interface is damaged by debris generation and its ejection from the contact area. The
application of hard coatings is an established solution to protect against fretting wear. For this
study the TiN hard coating manufactured by a PVD method has been selected, and tested
against a polycrystalline alumina smooth ball. A fretting test programme has been carried out
at a frequency of 5 Hz, 100 N normal load, 100 μm displacement amplitude and at five values
of relative humidity: 10, 30, 50, 70 and 90% at a temperature of 296 K. The intensity of the
wear process is shown to be significantly dependent on the environmental conditions. A
dissipated energy approach has been employed in this study to quantify wear rates of the hard
coating. The approach predicts wear kinetics under constant medium relative humidity in a
stable manner. It has been shown that an increase of relative humidity promotes the formation
of hydrate structures at the interface and modifies the third body rheology. This phenomenon
has been characterised by the evolution of wear kinetics associated with a significant variation
of the corresponding energy wear coefficient. Hence, a ‘composite’ wear law, integrating the
energy wear coefficient as a function of relative humidity, is introduced. It permits a
prediction of wear under variable relative humidity conditions from 10 to 90% within a single
fretting test. The stability of this approach is demonstrated by comparing various variable
relative humidity sequences
Development of a Wöhler-like approach to quantify the Ti(CxNy) coatings durability under oscillating sliding conditions
The selection of a proper material for the particular engineering application is a complex problem, as different materials offer unique properties and it is not possible to gather all useful characteristics in a single one. Hence, employment of different surface treatment processes is a widely used alternative solution. In many industrial applications, coating failure may be conducive to catastrophic consequences. Thus, to prevent the component damage it is essential to establish the coating endurance and indicate the safe running time of coated system. To this study PVD TiC, TiN and TiCN hard coatings have been selected and tested against polycrystalline alumina smooth ball. The series of fretting tests with reciprocating sliding at the frequency 5Hz have been carried out under 50-150N normal loads and under wide rage of constant as well as variable displacement amplitudes from 50µm to 200µm at a constant value of relative humidity of 50% at 296K temperature. To quantify the loss of material a dissipated energy approach has been applied where the wear depth evolution is referred to the cumulative density of friction work dissipated during the test. Different dominant damage mechanisms have been indicated for the investigated hard coatings, which is debris formation and ejection in case of TiC coating and progressive wear accelerated by cracking phenomena in case of TiN and TiCN coatings. Energy-Wöhler wear chart has been introduced, in which the critical 1 dissipated energy density corresponds to the moment when the substrate is reached after a given number of fretting cycles. Two different methods to determine the critical dissipated energy density are introduced and compared. The Energy-Wöhler approach has been employed not only to compare the global endurance of the investigated systems but also to compare the intrinsic wear properties of the coatings. It has been shown that the fretting wear process is accelerated by the stress-controlled spalling phenomenon below a critical residual thickness and a severe decohesion mechanism is activated. Finally the applicability of the investigated method to other coated systems subjected to wear under sliding conditions is discussed and analyzed. The perspectives of this new approach are elucidated
Localized magnetoplasmon modes arising from broken translational symmetry in semiconductor superlattices
The electromagnetic propagator associated with the localized collective
magnetoplasmon excitations in a semiconductor superlattice with broken
translational symmetry, is calculated analytically within linear response
theory. We discuss the properties of these collective excitations in both
radiative and non-radiative regimes of the electromagnetic spectra. We find
that low frequency retarded modes arise when the surface density of carriers at
the symmetry breaking layer is lower than the density at the remaining layers.
Otherwise a doublet of localized, high-frequency magnetoplasmon-like modes
occurs.Comment: Revtex file + separate pdf figure
Magnetoplasmon excitations in an array of periodically modulated quantum wires
Motivated by the recent experiment of Hochgraefe et al., we have investigated
the magnetoplasmon excitations in a periodic array of quantum wires with a
periodic modulation along the wire direction. The equilibrium and dynamic
properties of the system are treated self-consistently within the
Thomas-Fermi-Dirac-von Weizsaecker approximation. A calculation of the
dynamical response of the system to a far-infrared radiation field reveals a
resonant anticrossing between the Kohn mode and a finite-wavevector
longitudinal excitation which is induced by the density modulation along the
wires. Our theoretical calculations are found to be in excellent agreement with
experiment.Comment: 9 pages, 8 figure
Mean parameter model for the Pekar-Fr\"{o}hlich polaron in a multilayered heterostructure
The polaron energy and the effective mass are calculated for an electron
confined in a finite quantum well constructed of
layers. To simplify the study we suggest a model in which parameters of a
medium are averaged over the ground-state wave function. The rectangular and
the Rosen-Morse potential are used as examples.
To describe the confined electron properties explicitly to the second order
of perturbations in powers of the electron-phonon coupling constant we use the
exact energy-dependent Green function for the Rosen-Morse confining potential.
In the case of the rectangular potential, the sum over all intermediate virtual
states is calculated. The comparison is made with the often used leading term
approximation when only the ground-state is taken into account as a virtual
state. It is shown that the results are quite different, so the incorporation
of all virtual states and especially those of the continuous spectrum is
essential.
Our model reproduces the correct three-dimensional asymptotics at both small
and large widths. We obtained a rather monotonous behavior of the polaron
energy as a function of the confining potential width and found a peak of the
effective mass. The comparison is made with theoretical results by other
authors. We found that our model gives practically the same (or very close)
results as the explicit calculations for potential widths .Comment: 12 pages, LaTeX, including 5 PS-figures, subm. to Phys. Rev. B, new
data are discusse
Intrasubband and Intersubband Electron Relaxation in Semiconductor Quantum Wire Structures
We calculate the intersubband and intrasubband many-body inelastic Coulomb
scattering rates due to electron-electron interaction in two-subband
semiconductor quantum wire structures. We analyze our relaxation rates in terms
of contributions from inter- and intrasubband charge-density excitations
separately. We show that the intersubband (intrasubband) charge-density
excitations are primarily responsible for intersubband (intrasubband) inelastic
scattering. We identify the contributions to the inelastic scattering rate
coming from the emission of the single-particle and the collective excitations
individually. We obtain the lifetime of hot electrons injected in each subband
as a function of the total charge density in the wire.Comment: Submitted to PRB. 20 pages, Latex file, and 7 postscript files with
Figure
Recommended from our members
Application of multiplexed ion mobility spectrometry towards the identification of host protein signatures of treatment effect in pulmonary tuberculosis.
RationaleThe monitoring of TB treatments in clinical practice and clinical trials relies on traditional sputum-based culture status indicators at specific time points. Accurate, predictive, blood-based protein markers would provide a simpler and more informative view of patient health and response to treatment.ObjectiveWe utilized sensitive, high throughput multiplexed ion mobility-mass spectrometry (IM-MS) to characterize the serum proteome of TB patients at the start of and at 8 weeks of rifamycin-based treatment. We sought to identify treatment specific signatures within patients as well as correlate the proteome signatures to various clinical markers of treatment efficacy.MethodsSerum samples were collected from 289 subjects enrolled in CDC TB Trials Consortium Study 29 at time of enrollment and at the end of the intensive phase (after 40 doses of TB treatment). Serum proteins were immunoaffinity-depleted of high abundant components, digested to peptides and analyzed for data acquisition utilizing a unique liquid chromatography IM-MS platform (LC-IM-MS). Linear mixed models were utilized to identify serum protein changes in the host response to antibiotic treatment as well as correlations with culture status end points.ResultsA total of 10,137 peptides corresponding to 872 proteins were identified, quantified, and used for statistical analysis across the longitudinal patient cohort. In response to TB treatment, 244 proteins were significantly altered. Pathway/network comparisons helped visualize the interconnected proteins, identifying up regulated (lipid transport, coagulation cascade, endopeptidase activity) and down regulated (acute phase) processes and pathways in addition to other cross regulated networks (inflammation, cell adhesion, extracellular matrix). Detection of possible lung injury serum proteins such as HPSE, significantly downregulated upon treatment. Analyses of microbiologic data over time identified a core set of serum proteins (TTHY, AFAM, CRP, RET4, SAA1, PGRP2) which change in response to treatment and also strongly correlate with culture status. A similar set of proteins at baseline were found to be predictive of week 6 and 8 culture status.ConclusionA comprehensive host serum protein dataset reflective of TB treatment effect is defined. A repeating set of serum proteins (TTHY, AFAM, CRP, RET4, SAA1, PGRP2, among others) were found to change significantly in response to treatment, to strongly correlate with culture status, and at baseline to be predictive of future culture conversion. If validated in cohorts with long term follow-up to capture failure and relapse of TB, these protein markers could be developed for monitoring of treatment in clinical trials and in patient care
Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments
The recently developed technique of Cyclotron Radiation Emission Spectroscopy
(CRES) uses frequency information from the cyclotron motion of an electron in a
magnetic bottle to infer its kinetic energy. Here we derive the expected radio
frequency signal from an electron in a waveguide CRES apparatus from first
principles. We demonstrate that the frequency-domain signal is rich in
information about the electron's kinematic parameters, and extract a set of
measurables that in a suitably designed system are sufficient for disentangling
the electron's kinetic energy from the rest of its kinematic features. This
lays the groundwork for high-resolution energy measurements in future CRES
experiments, such as the Project 8 neutrino mass measurement.Comment: 15 pages, 10 figure
The Aharonov-Bohm effect for an exciton
We study theoretically the exciton absorption on a ring shreded by a magnetic
flux. For the case when the attraction between electron and hole is
short-ranged we get an exact solution of the problem. We demonstrate that,
despite the electrical neutrality of the exciton, both the spectral position of
the exciton peak in the absorption, and the corresponding oscillator strength
oscillate with magnetic flux with a period ---the universal flux
quantum. The origin of the effect is the finite probability for electron and
hole, created by a photon at the same point, to tunnel in the opposite
directions and meet each other on the opposite side of the ring.Comment: 13 RevTeX 3.0 pages plus 4 EPS-figures, changes include updated
references and an improved chapter on possible experimental realization
Gamow Shell Model Description of Weakly Bound Nuclei and Unbound Nuclear States
We present the study of weakly bound, neutron-rich nuclei using the nuclear
shell model employing the complex Berggren ensemble representing the bound
single-particle states, unbound Gamow states, and the non-resonant continuum.
In the proposed Gamow Shell Model, the Hamiltonian consists of a one-body
finite depth (Woods-Saxon) potential and a residual two-body interaction. We
discuss the basic ingredients of the Gamow Shell Model. The formalism is
illustrated by calculations involving {\it several} valence neutrons outside
the double-magic core: He and O.Comment: 19 pages, 20 encapsulated PostScript figure
- …
