263 research outputs found

    Microelectromagnets for Trapping and Manipulating Ultracold Atomic Quantum Gases

    Full text link
    We describe the production and characterization of microelectromagnets made for trapping and manipulating atomic ensembles. The devices consist of 7 fabricated parallel copper conductors 3 micrometer thick, 25mm long, with widths ranging from 3 to 30 micrometer, and are produced by electroplating a sapphire substrate. Maximum current densities in the wires up to 6.5 * 10^6 A / cm^2 are achieved in continuous mode operation. The device operates successfully at a base pressure of 10^-11 mbar. The microstructures permit the realization of a variety of magnetic field configurations, and hence provide enormous flexibility for controlling the motion and the shape of Bose-Einstein condensates.Comment: 4 pages, 3 figure

    Mechanism of electron localization in a quantum wire

    Full text link
    We show that quasi-bound electron states are formed in a quantum wire as a result of electron backscattering in the transition regions between the wire and the electron reservoirs, to which the wire is coupled. The backscattering mechanism is caused by electron density oscillations arising even in smooth transitions due to the reflection of electrons not transmitting through the wire. The quasi-bound states reveal themselves in resonances of the electron transmission probability through the wire. The calculations were carried out within the Hartree-Fock approximation using quasiclassic wavefunctions.Comment: 7 pages, IOP style, 4 figures, typos corrected, published versio

    Evidence of spontaneous spin polarized transport in magnetic nanowires

    Full text link
    The exploitation of the spin in charge-based systems is opening revolutionary opportunities for device architecture. Surprisingly, room temperature electrical transport through magnetic nanowires is still an unresolved issue. Here, we show that ferromagnetic (Co) suspended atom chains spontaneously display an electron transport of half a conductance quantum, as expected for a fully polarized conduction channel. Similar behavior has been observed for Pd (a quasi-magnetic 4d metal) and Pt (a non-magnetic 5d metal). These results suggest that the nanowire low dimensionality reinforces or induces magnetic behavior, lifting off spin degeneracy even at room temperature and zero external magnetic field.Comment: 4 pages, 3 eps fig

    Electron-phonon scattering in quantum point contacts

    Full text link
    We study the negative correction to the quantized value 2e2/h2e^2/h of the conductance of a quantum point contact due to the backscattering of electrons by acoustic phonons. The correction shows activated temperature dependence and also gives rise to a zero-bias anomaly in conductance. Our results are in qualitative agreement with recent experiments studying the 0.7 feature in the conductance of quantum point contacts.Comment: 4 pages, no figure

    Analysis of the temperature-dependent quantum point contact conductance in view of the metal-insulator transition in two dimensions

    Full text link
    The temperature dependence of the conductance of a quantum point contact has been measured. The conductance as a function of the Fermi energy shows temperature-independent fixed points, located at roughly multiple integers of e2/he^{2}/h. Around the first fixed point at e2^{2}/h, the experimental data for different temperatures can been scaled onto a single curve. For pure thermal smearing of the conductance steps, a scaling parameter of one is expected. The measured scaling parameter, however, is significantly larger than 1. The deviations are interpreted as a signature of the potential landscape of the quantum point contact, and of the source-drain bias voltage. We relate our results phenomenologically to the metal-insulator transition in two dimensions.Comment: 5 pages, 3 figure

    Strongly Correlated Two-Electron Transport in a Quantum Waveguide Having a Single Anderson Impurity

    Full text link
    The strongly correlated two-electron transport in one-dimensional channel coupled with an Anderson-type impurity is solved exactly via a Bethe ansatz approach. We show that the transport properties are fundamentally different for spin singlet and triplet states, thus the impurity acts as a novel filter that operates based on the total spin angular momentum of the electron pairs, but not individual spins. The filter provides a deterministic generation of electron entanglement in spin, as well as energy and momentum space.Comment: 12 pages, 3 figure

    Electron focusing, mode spectroscopy and mass enhancement in small GaAs/AlGaAs rings

    Full text link
    A new electron focusing effect has been discovered in small single and coupled GaAs/AlGaAs rings. The focusing in the single ring is attributed solely to internal orbits. The focusing effect allows the ring to be used as a small mass spectrometer. The focusing causes peaks in the magnetoresistance at low fields, and the peak positions were used to study the dispersion relation of the one-dimensional magnetoelectric subbands. The electron effective mass increases with the applied magnetic field by a factor of 5050, at a magnetic field of 0.5T0.5T. This is the first time this increase has been measured directly. General agreement obtains between the experiment and the subband calculations for straight channels.Comment: 13 pages figures are available by reques

    Momentum noise in a quantum point contact

    Get PDF
    Ballistic electrons flowing through a constriction can transfer momentum to the lattice and excite a vibration of a free-standing conductor. We show (both numerically and analytically) that the electromechanical noise power P does not vanish on the plateaus of quantized conductance -- in contrast to the current noise. The dependence of PP on the constriction width can be oscillatory or stepwise, depending on the geometry. The stepwise increase amounts to an approximate quantization of momentum noise.Comment: 4 pages including 4 figure

    Nonlinear Transport through NS Junctions due to Imperfect Andreev Reflection

    Full text link
    We investigate a normal metal -- superconductor (point) contact in the limit where the number of conducting channels in the metallic wire is reduced to few channels. As the effective Fermi energy drops below the gap energy, a conducting band with a width twice the Fermi energy is formed. Depending on the mode of operation, the conduction band can be further squeezed, leading to various non-linear effects in the current-voltage characteristics such as current saturation, a N-shaped negative differential resistance, bistability, and hysteresis.Comment: 4 pages, RevTeX, three postscript figure

    Channel Interference in a Quasi Ballistic Aharonov-Bohm Experiment

    Full text link
    New experiments are presented on the transmission of electron waves through a 2DEG (2 dimensional electron gas) ring with a gate on top of one of the branches. Magnetoconductance oscillations are observed, and the phase of the Aharanov-Bohm signal alternates between 0 and pi as the gate voltage is scanned. A Fourier transform of the data reveals a dominant period in the voltage which corresponds to the energy spacing between successive transverse modes.A theoretical model including random phase shifts between successive modes reproduces the essential features of the experiment.Comment: 4 pages, 6 Postscript figures, TEX, submitted to Physical Review Letter
    corecore