2,880 research outputs found
Condensate splitting in an asymmetric double well for atom chip based sensors
We report on the adiabatic splitting of a BEC of Rb atoms by an
asymmetric double-well potential located above the edge of a perpendicularly
magnetized TbGdFeCo film atom chip. By controlling the barrier height and
double-well asymmetry the sensitivity of the axial splitting process is
investigated through observation of the fractional atom distribution between
the left and right wells. This process constitutes a novel sensor for which we
infer a single shot sensitivity to gravity fields of . From a simple analytic model we propose improvements
to chip-based gravity detectors using this demonstrated methodology.Comment: 4 pages, 5 figure
Creation of collective many-body states and single photons from two-dimensional Rydberg lattice gases
The creation of collective many-body quantum states from a two-dimensional
lattice gas of atoms is studied. Our approach relies on the van-der-Waals
interaction that is present between alkali metal atoms when laser excited to
high-lying Rydberg s-states. We focus on a regime in which the laser driving is
strong compared to the interaction between Rydberg atoms. Here energetically
low-lying many-particle states can be calculated approximately from a quadratic
Hamiltonian. The potential usefulness of these states as a resource for the
creation of deterministic single-photon sources is illustrated. The properties
of these photon states are determined from the interplay between the particular
geometry of the lattice and the interatomic spacing.Comment: 12 pages, 8 figure
ISCCP CX observations during the FIRE/SRB Wisconsin Experiment from October 14 through November 2, 1986
Maps and tables are presented which show 45 satellite derived physical, radiation, or cloud parameters from ISCCP CX tapes during the FIRE/SRB Wisconsin experiment region from October 14 through November 2, 1986. Pixel locations selected for presentation are for an area which coincided with a 100 x 100 km array of evenly spaced ground truth sites. Area-averaged parameters derived from the ISSCP data should be consistent with area averages from the groundtruth stations
Effects of Epistasis and Pleiotropy on Fitness Landscapes
The factors that influence genetic architecture shape the structure of the
fitness landscape, and therefore play a large role in the evolutionary
dynamics. Here the NK model is used to investigate how epistasis and pleiotropy
-- key components of genetic architecture -- affect the structure of the
fitness landscape, and how they affect the ability of evolving populations to
adapt despite the difficulty of crossing valleys present in rugged landscapes.
Populations are seen to make use of epistatic interactions and pleiotropy to
attain higher fitness, and are not inhibited by the fact that valleys have to
be crossed to reach peaks of higher fitness.Comment: 10 pages, 6 figures. To appear in "Origin of Life and Evolutionary
Mechanisms" (P. Pontarotti, ed.). Evolutionary Biology: 16th Meeting 2012,
Springer-Verla
Spatially Resolved Excitation of Rydberg Atoms and Surface Effects on an Atom Chip
We demonstrate spatially resolved, coherent excitation of Rydberg atoms on an
atom chip. Electromagnetically induced transparency (EIT) is used to
investigate the properties of the Rydberg atoms near the gold coated chip
surface. We measure distance dependent shifts (~10 MHz) of the Rydberg energy
levels caused by a spatially inhomogeneous electric field. The measured field
strength and distance dependence is in agreement with a simple model for the
electric field produced by a localized patch of Rb adsorbates deposited on the
chip surface during experiments. The EIT resonances remain narrow (< 4 MHz) and
the observed widths are independent of atom-surface distance down to ~20 \mum,
indicating relatively long lifetime of the Rydberg states. Our results open the
way to studies of dipolar physics, collective excitations, quantum metrology
and quantum information processing involving interacting Rydberg excited atoms
on atom chips
Asymmetric double-well potential for single atom interferometry
We consider the evolution of a single-atom wavefunction in a time-dependent
double-well interferometer in the presence of a spatially asymmetric potential.
We examine a case where a single trapping potential is split into an asymmetric
double well and then recombined again. The interferometer involves a
measurement of the first excited state population as a sensitive measure of the
asymmetric potential. Based on a two-mode approximation a Bloch vector model
provides a simple and satisfactory description of the dynamical evolution. We
discuss the roles of adiabaticity and asymmetry in the double-well
interferometer. The Bloch model allows us to account for the effects of
asymmetry on the excited state population throughout the interferometric
process and to choose the appropriate splitting, holding and recombination
periods in order to maximize the output signal. We also compare the outcomes of
the Bloch vector model with the results of numerical simulations of the
multi-state time-dependent Schroedinger equation.Comment: 9 pages, 6 figure
Towards Adult Information Literacy Assessment in Latvia: UNESCO Media and Information Literacy Competency Matrix in Practice
The study presents conclusions regarding the possibility of adapting
the UNESCO MIL Competency Matrix and developing methodology for
information literacy assessment of the adult population. During field research in
a sample territory (Kekava district) and within an adult population target group,
the levels of information literacy are assessed, and information literacy
education needs are clarified. The research results can be used for the
development of diagnostic instruments for regional growth, planning of adult
education, elaboration of information literacy training programmes, as well as
for self-evaluation of information literacy competencies. The study has been
carried out within the framework of the European Social Fund project
“Development of Innovative Diagnostic Instruments for Regional Growth”
A lattice of microtraps for ultracold atoms based on patterned magnetic films
We have realized a two dimensional permanent magnetic lattice of
Ioffe-Pritchard microtraps for ultracold atoms. The lattice is formed by a
single 300 nm magnetized layer of FePt, patterned using optical lithography.
Our magnetic lattice consists of more than 15000 tightly confining microtraps
with a density of 1250 traps/mm. Simple analytical approximations for the
magnetic fields produced by the lattice are used to derive relevant trap
parameters. We load ultracold atoms into at least 30 lattice sites at a
distance of approximately 10 m from the film surface. The present result
is an important first step towards quantum information processing with neutral
atoms in magnetic lattice potentials.Comment: 7 pages, 7 figure
Self-trapping at the liquid vapor critical point
Experiments suggest that localization via self-trapping plays a central role
in the behavior of equilibrated low mass particles in both liquids and in
supercritical fluids. In the latter case, the behavior is dominated by the
liquid-vapor critical point which is difficult to probe, both experimentally
and theoretically. Here, for the first time, we present the results of
path-integral computations of the characteristics of a self-trapped particle at
the critical point of a Lennard-Jones fluid for a positive particle-atom
scattering length. We investigate the influence of the range of the
particle-atom interaction on trapping properties, and the pick-off decay rate
for the case where the particle is ortho-positronium.Comment: 12 pages, 3 figures, revtex4 preprin
- …
