1,010 research outputs found
Electrolytically regenerative hydrogen-oxygen fuel cell Patent
Electrolytically regenerative hydrogen-oxygen fuel cell
The Multiple Young Stellar Objects of HBC 515: An X-ray and Millimeter-wave Imaging Study in (Pre-main Sequence) Diversity
We present Chandra X-ray Observatory and Submillimeter Array (SMA) imaging of
HBC 515, a system consisting of multiple young stellar objects (YSOs). The five
members of HBC 515 represent a remarkably diverse array of YSOs, ranging from
the low-mass Class I/II protostar HBC 515B, through Class II and transition
disk objects (HBC 515D and C, respectively), to the "diskless", intermediate-
mass, pre-main sequence binary HBC 515A. Our Chandra/ACIS imaging establishes
that all five components are X-ray sources, with HBC 515A - a
subarcsecond-separation binary that is partially resolved by Chandra - being
the dominant X-ray source. We detect an X-ray flare associated with HBC 515B.
In the SMA imaging, HBC 515B is detected as a strong 1.3 mm continuum emission
source; a second, weaker mm continuum source is coincident with the position of
the transition disk object HBC 515C. These results strongly support the
protostellar nature of HBC 515B, and firmly establish HBC 515A as a member of
the rare class of relatively massive, X-ray luminous "weak-lined T Tauri stars"
that are binaries and have shed their disks at very early stages of pre-MS
evolution. The coexistence of two such disparate objects within a single,
presumably coeval multiple YSO system highlights the influence of pre- MS star
mass, binarity, and X-ray luminosity in regulating the lifetimes of
circumstellar, planet-forming disks and the timescales of star-disk
interactions.Comment: Accepted for publication in A&A; 11 pages, 5 figure
A High Resolution Study of the Slowly Contracting, Starless Core L1544
We present interferometric observations of N2H+(1--0) in the starless, dense
core L1544 in Taurus. Red-shifted self-absorption, indicative of inward
motions, is found toward the center of an elongated core. The data are fit by a
non-spherical model consisting of two isothermal, rotating, centrally condensed
layers. Through a hybrid global-individual fit to the spectra, we map the
variation of infall speed at scales ~1400AU and find values ~0.08 km/s around
the core center. The inward motions are small in comparison to thermal,
rotational, and gravitational speeds but are large enough to suggest that L1544
is very close to forming a star.Comment: 11 pages, 2 figures Accepted for publication in Astrophysical Journal
Letter
Inner Structure of Protostellar Collapse Candidate B335 Derived from Millimeter-Wave Interferometry
We present a study of the density structure of the protostellar collapse
candidate B335 using continuum observations from the IRAM Plateau de Bure
Interferometer made at wavelengths of 1.2mm and 3.0mm. We analyze these data,
which probe spatial scales from 5000 AU to 500 AU, directly in the visibility
domain by comparison to synthetic observations constructed from models that
assume different physical conditions. This approach allows for much more
stringent constraints to be derived from the data than from analysis of images.
A single radial power law in density provides a good description of the data,
with best fit power law index p=1.65+/-0.05. Through simulations, we quantify
the sensitivity of this result to various model uncertainties, including
assumptions of temperature distribution, outer boundary, dust opacity spectral
index, and an unresolved central component. The largest uncertainty comes from
the unknown presence of a centralized point source. A point source with 1.2mm
flux of F=12+/-7 mJy reduces the density index to p=1.47+/-0.07. The remaining
sources of systematic uncertainty, the most important of which is the
temperature distribution, likely contribute a total uncertainty of < 0.2. We
therefore find strong evidence that the power law index of the density
distribution within 5000 AU is significantly less than the value at larger
radii, close to 2.0 from previous studies of dust emission and extinction.
These results conform well to the generic paradigm of isolated, low-mass star
formation which predicts a power law density index close to p=1.5 for an inner
region of gravitational free fall onto the protostar.Comment: Accepted to the Astrophysical Journal; 27 pages, 3 figure
A High-Mass Protobinary System in the Hot Core W3(H2O)
We have observed a high-mass protobinary system in the hot core W3(H2O) with
the BIMA Array. Our continuum maps at wavelengths of 1.4mm and 2.8mm both
achieve sub-arcsecond angular resolutions and show a double-peaked morphology.
The angular separation of the two sources is 1.19" corresponding to 2.43X10^3
AU at the source distance of 2.04 kpc. The flux densities of the two sources at
1.4mm and 2.8mm have a spectral index of 3, translating to an opacity law of
kappa ~ nu. The small spectral indices suggest that grain growth has begun in
the hot core. We have also observed 5 K components of the CH3CN (12-11)
transitions. A radial velocity difference of 2.81 km/s is found towards the two
continuum peaks. Interpreting these two sources as binary components in orbit
about one another, we find a minimum mass of 22 Msun for the system. Radiative
transfer models are constructed to explain both the continuum and methyl
cyanide line observations of each source. Power-law distributions of both
density and temperature are derived. Density distributions close to the
free-fall value, r^-1.5, are found for both components, suggesting continuing
accretion. The derived luminosities suggest the two sources have equivalent
zero-age main sequence (ZAMS) spectral type B0.5 - B0. The nebular masses
derived from the continuum observations are about 5 Msun for source A and 4
Msun for source C. A velocity gradient previously detected may be explained by
unresolved binary rotation with a small velocity difference.Comment: 38 pages, 9 figures, accepted by The Astrophysical Journa
ALMA Observations of the Young Substellar Binary System 2M1207
We present ALMA observations of the 2M1207 system, a young binary made of a
brown dwarf with a planetary-mass companion at a projected separation of about
40 au. We detect emission from dust continuum at 0.89 mm and from the rotational transition of CO from a very compact disk around the young brown
dwarf. The small radius found for this brown dwarf disk may be due to
truncation from the tidal interaction with the planetary-mass companion. Under
the assumption of optically thin dust emission, we estimated a dust mass of 0.1
for the 2M1207A disk, and a 3 upper limit of for dust surrounding 2M1207b, which is the tightest upper
limit obtained so far for the mass of dust particles surrounding a young
planetary-mass companion. We discuss the impact of this and other
non-detections of young planetary-mass companions for models of planet
formation, which predict the presence of circum-planetary material surrounding
these objects.Comment: 10 pages, 6 figures, accepted for publication in A
Infall, Outflow, Rotation, and Turbulent Motions of Dense Gas within NGC 1333 IRAS 4
Millimeter wavelength observations are presented of NGC 1333 IRAS 4, a group
of highly-embedded young stellar objects in Perseus, that reveal motions of
infall, outflow, rotation, and turbulence in the dense gas around its two
brightest continuum objects, 4A and 4B. These data have finest angular
resolution of approximately 2" (0.0034 pc) and finest velocity resolution of
0.13 km/s. Infall motions are seen from inverse P-Cygni profiles observed in
H2CO 3_12-2_11 toward both objects, but also in CS 3-2 and N2H+ 1-0 toward 4A,
providing the least ambiguous evidence for such motions toward low-mass
protostellar objects. Outflow motions are probed by bright line wings of H2CO
3_12-2_11 and CS 3-2 observed at positions offset from 4A and 4B, likely
tracing dense cavity walls. Rotational motions of dense gas are traced by a
systematic variation of the N2H+ line velocities, and such variations are found
around 4A but not around 4B. Turbulent motions appear reduced with scale, given
N2H+ line widths around both 4A and 4B that are narrower by factors of 2 or 3
than those seen from single-dish observations. Minimum observed line widths of
approximately 0.2 km/s provide a new low, upper bound to the velocity
dispersion of the parent core to IRAS 4, and demonstrate that turbulence within
regions of clustered star formation can be reduced significantly. A third
continuum object in the region, 4B', shows no detectable line emission in any
of the observed molecular species.Comment: LateX, 51 pages, 9 figures, accepted by Ap
- …
