1,207 research outputs found
Gravitational energy and cosmic acceleration
Cosmic acceleration is explained quantitatively, as an apparent effect due to
gravitational energy differences that arise in the decoupling of bound systems
from the global expansion of the universe. "Dark energy" is a misidentification
of those aspects of gravitational energy which by virtue of the equivalence
principle cannot be localised, namely gradients in the energy due to the
expansion of space and spatial curvature variations in an inhomogeneous
universe. A new scheme for cosmological averaging is proposed which solves the
Sandage-de Vaucouleurs paradox. Concordance parameters fit supernovae
luminosity distances, the angular scale of the sound horizon in the CMB
anisotropies, and the effective comoving baryon acoustic oscillation scale seen
in galaxy clustering statistics. Key observational anomalies are potentially
resolved, and unique predictions made, including a quantifiable variance in the
Hubble flow below the scale of apparent homogeneity.Comment: 9 pages, 2 figures. An essay which received Honorable Mention in the
2007 GRF Essay Competition. To appear in a special issue of Int. J. Mod.
Phys.
Imaging the Near Field
In an earlier paper we introduced the concept of the perfect lens which
focuses both near and far electromagnetic fields, hence attaining perfect
resolution. Here we consider refinements of the original prescription designed
to overcome the limitations of imperfect materials. In particular we show that
a multi-layer stack of positive and negative refractive media is less sensitive
to imperfections. It has the novel property of behaving like a fibre-optic
bundle but one that acts on the near field, not just the radiative component.
The effects of retardation are included and minimized by making the slabs
thinner. Absorption then dominates image resolution in the near-field. The
deleterious effects of absorption in the metal are reduced for thinner layers.Comment: RevTeX, (9 pages, 8 figures
Robertson-Walker fluid sources endowed with rotation characterised by quadratic terms in angular velocity parameter
Einstein's equations for a Robertson-Walker fluid source endowed with
rotation Einstein's equations for a Robertson-Walker fluid source endowed with
rotation are presented upto and including quadratic terms in angular velocity
parameter. A family of analytic solutions are obtained for the case in which
the source angular velocity is purely time-dependent. A subclass of solutions
is presented which merge smoothly to homogeneous rotating and non-rotating
central sources. The particular solution for dust endowed with rotation is
presented. In all cases explicit expressions, depending sinusoidally on polar
angle, are given for the density and internal supporting pressure of the
rotating source. In addition to the non-zero axial velocity of the fluid
particles it is shown that there is also a radial component of velocity which
vanishes only at the poles. The velocity four-vector has a zero component
between poles
Dynamical coherent states and physical solutions of quantum cosmological bounces
A new model is studied which describes the quantum behavior of transitions
through an isotropic quantum cosmological bounce in loop quantum cosmology
sourced by a free and massless scalar field. As an exactly solvable model even
at the quantum level, it illustrates properties of dynamical coherent states
and provides the basis for a systematic perturbation theory of loop quantum
gravity. The detailed analysis is remarkably different from what is known for
harmonic oscillator coherent states. Results are evaluated with regard to their
implications in cosmology, including a demonstration that in general quantum
fluctuations before and after the bounce are unrelated. Thus, even within this
solvable model the condition of classicality at late times does not imply
classicality at early times before the bounce without further assumptions.
Nevertheless, the quantum state does evolve deterministically through the
bounce.Comment: 30 pages, 3 figure
Asymptotic properties of black hole solutions in dimensionally reduced Einstein-Gauss-Bonnet gravity
We study the asymptotic behavior of the spherically symmetric solutions of
the system obtained from the dimensional reduction of the six-dimensional
Einstein- Gauss-Bonnet action. We show that in general the scalar field that
parametrizes the size of the internal space is not trivial, but nevertheless
the solutions depend on a single parameter. In analogy with other models
containing Gauss-Bonnet terms, naked singularities are avoided if a minimal
radius for the horizon is assumed.Comment: 9 pages, plain Te
A DC magnetic metamaterial
Electromagnetic metamaterials are a class of materials which have been
artificially structured on a subwavelength scale. They are currently the focus
of a great deal of interest because they allow access to previously
unrealisable properties like a negative refractive index. Most metamaterial
designs have so far been based on resonant elements, like split rings, and
research has concentrated on microwave frequencies and above. In this work, we
present the first experimental realisation of a non-resonant metamaterial
designed to operate at zero frequency. Our samples are based on a
recently-proposed template for an anisotropic magnetic metamaterial consisting
of an array of superconducting plates. Magnetometry experiments show a strong,
adjustable diamagnetic response when a field is applied perpendicular to the
plates. We have calculated the corresponding effective permeability, which
agrees well with theoretical predictions. Applications for this metamaterial
may include non-intrusive screening of weak DC magnetic fields.Comment: 6 pages, 3 figure
Slowly, rotating non-stationary, fluid solutions of Einstein's equations and their match to Kerr empty space-time
A general class of solutions of Einstein's equation for a slowly rotating
fluid source, with supporting internal pressure, is matched using Lichnerowicz
junction conditions, to the Kerr metric up to and including first order terms
in angular speed parameter. It is shown that the match applies to any
previously known non-rotating fluid source made to rotate slowly for which a
zero pressure boundary surface exists. The method is applied to the dust source
of Robertson-Walker and in outline to an interior solution due to McVittie
describing gravitational collapse. The applicability of the method to
additional examples is transparent. The differential angular velocity of the
rotating systems is determined and the induced rotation of local inertial frame
is exhibited
Entropy of Lovelock Black Holes
A general formula for the entropy of stationary black holes in Lovelock
gravity theories is obtained by integrating the first law of black hole
mechanics, which is derived by Hamiltonian methods. The entropy is not simply
one quarter of the surface area of the horizon, but also includes a sum of
intrinsic curvature invariants integrated over a cross section of the horizon.Comment: 15 pages, plain Latex, NSF-ITP-93-4
- …
