1,286 research outputs found
Low-diffusivity scalar transport using a WENO scheme and dual meshing
Interfacial mass transfer of low-diffusive substances in an unsteady flow
environment is marked by a very thin boundary layer at the interface and other
regions with steep concentration gradients. A numerical scheme capable of
resolving accurately most details of this process is presented. In this scheme,
the fourth-order accurate WENO method developed by Liu et al. (1994) was
implemented on a non-uniform staggered mesh to discretize the scalar convection
while for the scalar diffusion a fourth-order accurate central discretization
was employed. The discretization of the scalar convection-diffusion equation
was combined with a fourth-order Navier-Stokes solver which solves the
incompressible flow. A dual meshing strategy was employed, in which the scalar
was solved on a finer mesh than the incompressible flow. The solver was tested
by performing a number of two-dimensional simulations of an unstably stratified
flow with low diffusivity scalar transport. The unstable stratification led to
buoyant convection which was modelled using a Boussinesq approximation with a
linear relationship between flow temperature and density. The order of accuracy
for one-dimensional scalar transport on a stretched and uniform grid was also
tested. The results show that for the method presented above a relatively
coarse mesh is sufficient to accurately describe the fluid flow, while the use
of a refined mesh for the low-diffusive scalars is found to be beneficial in
order to obtain a highly accurate resolution with negligible numerical
diffusion
Measurement of the Absolute np Scattering Differential Cross Section at 194 MeV
We describe a double-scattering experiment with a novel tagged neutron beam
to measure differential cross sections for np back-scattering to better than 2%
absolute precision. The measurement focuses on angles and energies where the
cross section magnitude and angle-dependence constrain the charged pion-nucleon
coupling constant, but existing data show serious discrepancies among
themselves and with energy-dependent partial wave analyses (PWA). The present
results are in good accord with the PWA, but deviate systematically from other
recent measurements.Comment: 4 pages, 4 figure
Amine functionalization of cholecyst-derived extracellular matrix with generation 1 PAMAM dendrimer
This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Biomacromolecules, copyright © American Chemical Society after peer review. To access the final edited and published work, see http://pubs.acs.org/doi/pdf/10.1021/bm701055k.A method to functionalize cholecyst-derived extracellular matrix (CEM) with free amine groups was established in an attempt to improve its potential for tethering of bioactive molecules. CEM was incorporated with Generation-1 polyamidoamine (G1 PAMAM) dendrimer by using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide and N-hydroxysuccinimide cross-linking system. The nature of incorporation of PAMAM dendrimer was evaluated using shrink temperature measurements, Fourier transform infrared (FTIR) assessment, ninhydrin assay, and swellability. The effects of PAMAM incorporation on mechanical and degradation properties of CEM were evaluated using a uniaxial mechanical test and collagenase degradation assay, respectively. Ninhydrin assay and FTIR assessment confirmed the presence of increasing free amine groups with increasing quantity of PAMAM in dendrimer-incorporated CEM (DENCEM) scaffolds. The amount of dendrimer used was found to be critical in controlling scaffold degradation, shrink temperature, and free amine content. Cell culture studies showed that fibroblasts seeded on DENCEM maintained their metabolic activity and ability to proliferate in vitro. In addition, fluorescence cell staining and scanning electron microscopy analysis of cell-seeded DENCEM showed preservation of normal fibroblast morphology and phenotype
Relativistic MHD with Adaptive Mesh Refinement
This paper presents a new computer code to solve the general relativistic
magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh
refinement (AMR). The fluid equations are solved using a finite difference
Convex ENO method (CENO) in 3+1 dimensions, and the AMR is Berger-Oliger.
Hyperbolic divergence cleaning is used to control the
constraint. We present results from three flat space tests, and examine the
accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel
solution. The AMR simulations substantially improve performance while
reproducing the resolution equivalent unigrid simulation results. Finally, we
discuss strong scaling results for parallel unigrid and AMR runs.Comment: 24 pages, 14 figures, 3 table
Do rural migrants 'float' in urban China? Neighbouring and neighbourhood sentiment in Beijing
Urban China reached 50% of the nation’s population by 2010, mainly as a result of massive rural–urban migration. There is substantial evidence of their social marginality in terms of occupational and housing opportunities. Here we ask about their incorporation into the neighbourhoods where they live. Rural migrants are called the ‘floating population’ in China, suggesting that their residence in the city is only temporary and that they are unlikely to develop strong local ties. This study contrasts the neighbourhood socialising of migrant tenants with that of urban homeowners who were born in the city. It draws on original survey research in Beijing that included questions on relations with neighbours and neighbourhood sentiment. It is found that migrants are more likely to engage in socialising and exchange of help with neighbours, and consequently their neighbouring helps strengthen their sentiment towards the neighbourhoods where they live. It is argued that contemporary social changes – including rising education and homeownership – may actually reduce neighbouring, while rural migrants’ marginality makes them more dependent on their local social network
Measurement of the Absolute Differential Cross Section for np Elastic Scattering at 194 MeV
A tagged medium-energy neutron beam has been used in a precise measurement of
the absolute differential cross section for np back-scattering. The results
resolve significant discrepancies within the np database concerning the angular
dependence in this regime. The experiment has determined the absolute
normalization with 1.5% uncertainty, suitable to verify constraints of
supposedly comparable precision that arise from the rest of the database in
partial wave analyses. The analysis procedures, especially those associated
with evaluation of systematic errors in the experiment, are described in detail
so that systematic uncertainties may be included in a reasonable way in
subsequent partial wave analysis fits incorporating the present results.Comment: 22 pages, 21 figures, submitted for publication in Physical Review
The high-precision, charge-dependent Bonn nucleon-nucleon potential (CD-Bonn)
We present a charge-dependent nucleon-nucleon (NN) potential that fits the
world proton-proton data below 350 MeV available in the year of 2000 with a
chi^2 per datum of 1.01 for 2932 data and the corresponding neutron-proton data
with chi^2/datum = 1.02 for 3058 data. This reproduction of the NN data is more
accurate than by any phase-shift analysis and any other NN potential. The
charge-dependence of the present potential (that has been dubbed `CD-Bonn') is
based upon the predictions by the Bonn Full Model for charge-symmetry and
charge-independence breaking in all partial waves with J <= 4. The potential is
represented in terms of the covariant Feynman amplitudes for one-boson exchange
which are nonlocal. Therefore, the off-shell behavior of the CD-Bonn potential
differs in a characteristic and well-founded way from commonly used local
potentials and leads to larger binding energies in nuclear few- and many-body
systems, where underbinding is a persistent problem.Comment: 69 pages (RevTex) including 20 tables and 9 figures (ps files
Microscopic calculations of medium effects for 200-MeV (p,p') reactions
We examine the quality of a G-matrix calculation of the effective
nucleon-nucleon (NN) interaction for the prediction of the cross section and
analyzing power for 200-MeV (p,p') reactions that populate natural parity
states in O, Si, and Ca. This calculation is based on a
one-boson-exchange model of the free NN force that reproduces NN observables
well. The G-matrix includes the effects of Pauli blocking, nuclear binding, and
strong relativistic mean-field potentials. The implications of adjustments to
the effective mass ansatz to improve the quality of the approximation at
momenta above the Fermi level will be discussed, along with the general quality
of agreement to a variety of (p,p') transitions.Comment: 36 pages, TeX, 18 figure
Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils
The development of BiPo detectors is dedicated to the measurement of
extremely high radiopurity in Tl and Bi for the SuperNEMO
double beta decay source foils. A modular prototype, called BiPo-1, with 0.8
of sensitive surface area, has been running in the Modane Underground
Laboratory since February, 2008. The goal of BiPo-1 is to measure the different
components of the background and in particular the surface radiopurity of the
plastic scintillators that make up the detector. The first phase of data
collection has been dedicated to the measurement of the radiopurity in
Tl. After more than one year of background measurement, a surface
activity of the scintillators of (Tl) 1.5
Bq/m is reported here. Given this level of background, a larger BiPo
detector having 12 m of active surface area, is able to qualify the
radiopurity of the SuperNEMO selenium double beta decay foils with the required
sensitivity of (Tl) 2 Bq/kg (90% C.L.) with a six
month measurement.Comment: 24 pages, submitted to N.I.M.
- …
