1,440 research outputs found

    Numerical modelling of the temperature distribution in a two-phase closed thermosyphon

    Get PDF
    Interest in the use of heat pipe technology for heat recovery and energy saving in a vast range of engineering applications has been on the rise in recent years. Heat pipes are playing a more important role in many industrial applications, particularly in improving the thermal performance of heat exchangers and increasing energy savings in applications with commercial use. In this paper, a comprehensive CFD modelling was built to simulate the details of the two-phase flow and heat transfer phenomena during the operation of a wickless heat pipe or thermosyphon, that otherwise could not be visualised by empirical or experimental work. Water was used as the working fluid. The volume of the fluid (VOF) model in ANSYS FLUENT was used for the simulation. The evaporation, condensation and phase change processes in a thermosyphon were dealt with by adding a user-defined function (UDF) to the FLUENT code. The simulation results were compared with experimental measurements at the same condition. The simulation was successful in reproducing the heat and mass transfer processes in a thermosyphon. Good agreement was observed between CFD predicted temperature profiles and experimental temperature data.The Saudi Cultural Bureau in London, the Ministry of Higher Education and the Mechanical Engineering Department, Umm Al-Qura University

    A VLBA search for binary black holes in active galactic nuclei with double-peaked optical emission line spectra

    Full text link
    We have examined a subset of 11 active galactic nuclei (AGN) drawn from a sample of 87 objects that possess double-peaked optical emission line spectra, as put forward by Wang et al. (2009a) and are detectable in the FIRST survey at radio wavelengths. The double-peaked nature of the optical emission line spectra has been suggested as evidence for the existence of binary black holes in these AGN, although this interpretation is controversial. We make a simple suggestion, that direct evidence of binary black holes in these objects could be searched for in the form of dual sources of compact radio emission associated with the AGN. To explore this idea, we have used the Very Long Baseline Array to observe these 11 objects from the Wang et al. (2009a) sample. Of the 11 objects, we detect compact radio emission from two, SDSS J151709+335324 and SDSS J160024+264035. Both objects show single components of compact radio emission. The morphology of SDSS J151709+335324 is consistent with a recent comprehensive multi-wavelength study of this object by Rosario et al. (2010). Assuming that the entire sample consists of binary black holes, we would expect of order one double radio core to be detected, based on radio wavelength detection rates from FIRST and VLBI surveys. We have not detected any double cores, thus this work does not substantially support the idea that AGN with double-peaked optical emission lines contain binary black holes. However, the study of larger samples should be undertaken to provide a more secure statistical result, given the estimated detection rates.Comment: 14 pages, 3 figures. To appear in A

    Measurement of the Integrated Faraday Rotations of BL Lac Objects

    Full text link
    We present the results of multi-frequency polarization VLA observations of radio sources from the complete sample of northern, radio-bright BL Lac objects compiled by H. Kuhr and G. Schmidt. These were used to determine the integrated rotation measures of 18 objects, 15 of which had never been measured previously, which hindered analysis of the intrinsic polarization properties of objects in the complete sample. These measurements make it possible to correct the observed orientations of the linear polarizations of these sources for the effect of Faraday rotation. The most probable origin for Faraday rotation in these objects is the Galactic interstellar medium. The results presented complete measurements of the integrated rotation measures for all 34 sources in the complete sample of BL Lac objects.Comment: 9 pages, 7 figure

    Homogenization of the Equations Governing the Flow Between a Slider and a Rough Spinning Disk

    Get PDF
    We have analyzed the behavior of the flow between a slider bearing and a hard-drive magnetic disk under two types of surface roughness. For both cases the length scale of the roughness along the surface is small as compared to the scale of the slider, so that a homogenization of the governing equations was performed. For the case of longitudinal roughness, we derived a one-dimensional lubrication-type equation for the leading behavior of the pressure in the direction parallel to the velocity of the disk. The coefficients of the equation are determined by solving linear elliptic equations on a domain bounded by the gap height in the vertical direction and the period of the roughness in the span-wise direction. For the case of transverse roughness the unsteady lubrication equations were reduced, following a multiple scale homogenization analysis, to a steady equation for the leading behavior of the pressure in the gap. The reduced equation involves certain averages of the gap height, but retains the same form of the usual steady, compressible lubrication equations. Numerical calculations were performed for both cases, and the solution for the case of transverse roughness was shown be in excellent agreement with a corresponding numerical calculation of the original unsteady equations

    Some operational aspects of a rotating advanced-technology space station for the year 2025

    Get PDF
    The study of an Advanced Technology Space Station which would utilize the capabilities of subsystems projected for the time frame of the years 2000 to 2025 is discussed. The study includes tradeoffs of nuclear versus solar dynamic power systems that produce power outputs of 2.5 megawatts and analyses of the dynamics of the spacecraft of which portions are rotated for artificial gravity. The design considerations for the support of a manned Mars mission from low Earth orbit are addressed. The studies extend to on-board manufacturing, internal gas composition effects, and locomotion and material transfer under artificial gravity forces. The report concludes with an assessment of technology requirements for the Advanced Technology Space Station
    corecore