743 research outputs found
Electron-Phonon mechanism for Superconductivity in NaCoO: Valence-Band Suhl-Kondo effect Driven by Shear Phonons
To study the possible mechanism of superconductivity in NaCoO,
we examine the interaction between all the relevant optical phonons (breathing
and shear phonons) and -electrons of Co-ions, and study
the transition temperature for a s-wave superconductivity. The obtained is very low when the -valence-bands are far below the Fermi level.
However, is strongly enhanced when the top of the
-valence-bands is close to the Fermi level (say -50meV), thanks to
interband hopping of Cooper pairs caused by shear phonons. This ``valence-band
Suhl-Kondo mechanism'' due to shear phonons is significant to understand the
superconductivity in NaCoO. By the same mechanism, the kink
structure of the band-dispersion observed by ARPES, which indicates the strong
mass-enhancement () due to optical phonons, is also explained.Comment: 5 pages, 4 figures; v2:Added references, published in J. Phys. Soc.
Jp
Flat bands in topological media
Topological media are systems whose properties are protected by topology and
thus are robust to deformations of the system. In topological insulators and
superconductors the bulk-surface and bulk-vortex correspondence gives rise to
the gapless Weyl, Dirac or Majorana fermions on the surface of the system and
inside vortex cores. Here we show that in gapless topological media, the
bulk-surface and bulk-vortex correspondence is more effective: it produces
topologically protected gapless fermions without dispersion -- the flat band.
Fermion zero modes forming the flat band are localized on the surface of
topological media with protected nodal lines and in the vortex core in systems
with topologically protected Fermi points (Weyl points). Flat band has an
extremely singular density of states, and we show that this property may give
rise in particular to surface superconductivity which could exist even at room
temperature.Comment: 9 pages, 5 figures, version to appear in JETP Letter
d-Wave Spin Density Wave phase in the Attractive Hubbard Model with Spin Polarization
We investigate the possibility of unconventional spin density wave (SDW) in
the attractive Hubbard model with finite spin polarization. We show that
pairing and density fluctuations induce the transverse d-wave SDW near the
half-filling. This novel SDW is related to the d-wave superfluidity induced by
antiferromagnetic spin fluctuations, in the sense that they are connected with
each other through Shiba's attraction-repulsion transformation. Our results
predict the d-wave SDW in real systems, such as cold Fermi atom gases with
population imbalance and compounds involving valence skipper elements
Identification of simple sequence repeat markers for sweetpotato weevil resistance
The development of sweetpotato [Ipomoea batatas (L.) Lam] germplasm with resistance to sweetpotato weevil (SPW) requires an understanding of the biochemical and genetic mechanisms of resistance to optimize crop resistance. The African sweetpotato landrace, ‘New Kawogo’, was reported to be moderately resistant to two species of SPW, Cylas puncticollis and Cylas brunneus. Resistance has been associated with the presence of hydroxycinnamic acids esters (HCAs), but the underlying genetic basis remains unknown. To determine the genetic basis of this resistance, a bi-parental sweetpotato population from a cross between the moderately resistant, white-fleshed ‘New Kawogo’ and the highly susceptible, orange-fleshed North American variety ‘Beauregard’ was evaluated for SPW resistance and genotyped with simple sequence repeat (SSR) markers to identify weevil resistance loci. SPW resistance was measured on the basis of field storage root SPW damage severity and total HCA ester concentrations. Moderate broad sense heritability (H2 = 0.49) was observed for weevil resistance in the population. Mean genotype SPW severity scores ranged from 1.0 to 9.0 and 25 progeny exhibited transgressive segregation for SPW resistance. Mean genotype total HCA ester concentrations were significantly different (P < 0.0001). A weak but significant correlation (r = 0.103, P = 0.015) was observed between total HCA ester concentration and SPW severity. A total of five and seven SSR markers were associated with field SPW severity and total HCA ester concentration, respectively. Markers IBS11, IbE5 and IbJ544b showed significant association with both field and HCA-based resistance, representing potential markers for the development of SPW resistant sweetpotato cultivars
Ablation and Chemical Alteration of Cosmic Dust Particles During Entry into the Earth's Atmosphere
Symmetry and Topology in Superconductors - Odd-frequency pairing and edge states -
Superconductivity is a phenomenon where the macroscopic quantum coherence
appears due to the pairing of electrons. This offers a fascinating arena to
study the physics of broken gauge symmetry. However, the important symmetries
in superconductors are not only the gauge invariance. Especially, the symmetry
properties of the pairing, i.e., the parity and spin-singlet/spin-triplet,
determine the physical properties of the superconducting state. Recently it has
been recognized that there is the important third symmetry of the pair
amplitude, i.e., even or odd parity with respect to the frequency. The
conventional uniform superconducting states correspond to the even-frequency
pairing, but the recent finding is that the odd-frequency pair amplitude arises
in the spatially non-uniform situation quite ubiquitously. Especially, this is
the case in the Andreev bound state (ABS) appearing at the surface/interface of
the sample. The other important recent development is on the nontrivial
topological aspects of superconductors. As the band insulators are classified
by topological indices into (i) conventional insulator, (ii) quantum Hall
insulator, and (iii) topological insulator, also are the gapped
superconductors. The influence of the nontrivial topology of the bulk states
appears as the edge or surface of the sample. In the superconductors, this
leads to the formation of zero energy ABS (ZEABS). Therefore, the ABSs of the
superconductors are the place where the symmetry and topology meet each other
which offer the stage of rich physics. In this review, we discuss the physics
of ABS from the viewpoint of the odd-frequency pairing, the topological
bulk-edge correspondence, and the interplay of these two issues. It is
described how the symmetry of the pairing and topological indices determines
the absence/presence of the ZEABS, its energy dispersion, and properties as the
Majorana fermions.Comment: 91 pages, 38 figures, Review article, references adde
Selective Disparity of Ordinary Chondritic Precursors in Micrometeorite Flux
All known extraterrestrial dust (micrometeoroids) entering the Earth's atmosphere is anticipated to have a significant contribution from ordinary chondritic precursors, as seen in meteorites, but this is an apparent contradiction that needs to be addressed. Ordinary chondrites represent a minor contribution to the overall meteor influx compared to carbonaceous chondrites, which are largely dominated by CI and/or CM chondrites. However, the near-Earth asteroid population presents a scenario with sufficient scope for generation of dust-sized debris from ordinary chondritic sources. The bulk chemical composition of 3255 micrometeorites (MMs) collected from Antarctica and deep-sea sediments has shown Mg/Si largely dominated by carbonaceous chondrites, and less than 10% having ordinary chondritic precursors. The chemical ablation model is combined with different initial chondritic compositions (CI, CV, L, LL, H), and the results clearly indicate that high-density (≥2.8 g cm⁻³) precursors, such as CV and ordinary chondrites in the size range 100–700 μm and zenith angle 0°–70°, ablate at much faster rates and lose their identity even before reaching the Earth's surface and hence are under-represented in our collections. Moreover, their ability to survive as MMs remains grim for high-velocity micrometeoroids (>16 km s⁻¹). The elemental ratio for CV and ordinary chondrites are also similar to each other irrespective of the difference in the initial chemical composition. In conclusion, MMs belonging to ordinary chondritic precursors' concentrations may not be insignificant in thermosphere, as they are found on Earth's surface
Fetoscopic insufflation of heated-humidified carbon dioxide during simulated spina bifida repair is safe under controlled anesthesia in the fetal lamb
Objective: To assess the safety of Partial-Amniotic-Insufflation-of-heated-humidified-CO2 (hPACI) during fetoscopic spina bifida repair (fSB-repair). Method: A simulated fSB-repair through an exteriorized uterus under hPACI was performed in 100-day fetal lambs (term = 145 days) under a laboratory anesthesia protocol (n = 5; group 1) which is known to induce maternal-fetal acidosis and hypercapnia. Since these may not occur clinically, we applied a clinical anesthesia protocol (n = 5; group 2), keeping maternal parameters within physiological conditions, that is, controlled maternal arterial carbon dioxide (CO2) pressure (pCO2 = 30 mmHg), blood pressure (≥67 mmHg), and temperature (37.1–39.8°C). Our superiority study used fetal pH as the primary outcome. Results: Compared to group 1, controlled anesthesia normalized fetal pH (7.23 ± 0.02 vs. 7.36 ± 0.02, p < 0.001), pCO2 (70.0 ± 9.1 vs. 43.0 ± 1.0 mmHg, p = 0.011) and bicarbonate (27.8 ± 1.1 vs. 24.0 ± 0.9 mmol/L, p = 0.071) at baseline. It kept them within clinically acceptable limits (pH ≥ 7.23, pCO2 ≤ 70 mmHg, bicarbonate ≤ 30 mm/L) for ≥120 min of hPACI as opposed to ≤30 min in group one. Fetal pO2 and lactate were comparable between groups and generally within normal range. Fetal brain histology demonstrated fewer apoptotic cells and higher neuronal density in the prefrontal cortex in group two. There was no difference in fetal membrane inflammation, which was mild. Conclusion: Fetoscopic insufflation of heated-humidified CO2 during simulated fSB-repair through an exteriorized uterus can be done safely under controlled anesthesia
Recommended from our members
Effect of short-term decrease in water temperature on body temperature and involvement of testosterone in steelhead and rainbow trout, Oncorhynchus mykiss
The Pacific salmonid species Oncorhynchus mykiss is separated into a migratory form (steelhead trout) and a
non-migratory form (rainbow trout). A decrease in water temperature is likely a cue triggering downstream
behavior in the migratory form, and testosterone inhibits onset of this behavior. To elucidate differences in
sensitivity to water temperature decreases between the migratory and non-migratory forms and effect of testosterone
on the sensitivity, we examined two experiments. In experiment 1, we compared changes in body
temperature during a short-term decrease in water temperature between both live and dead steelhead and
rainbow trout. In experiment 2, we investigated effects of testosterone on body temperature decrease in
steelhead trout. Water temperature was decreased by 3 °C in 30 min. The body temperature of the steelhead
decreased faster than that of the rainbow trout. In contrast, there was no significant difference in the decrease
in body temperature between dead steelhead and rainbow trout specimens. The body temperature of the
testosterone-treated steelhead trout decreased more slowly than that of control fish. Our results suggest
that the migratory form is more sensitive to decreases in water temperature than the non-migratory form.
Moreover, testosterone might play an inhibitory role in sensitivity to such decreases.Keywords: Downstream migration, Steelhead trout, Rainbow trout, Testosterone, Body temperatureKeywords: Downstream migration, Steelhead trout, Rainbow trout, Testosterone, Body temperatur
- …
