29,188 research outputs found
Beltrami-like fields created by baroclinic effect in two-fluid plasmas
A theory of two-dimensional plasma evolution with Beltrami-like flow and
field due to baroclinic effect has been presented. Particular solution of the
nonlinear two-fluid equations is obtained. This simple model can explain the
generation of magnetic field without assuming the presence of a seed in the
system. Coupled field and flow naturally grow together. The theory has been
applied to estimate B-field in laser-induced plasmas and the result is in good
agreement with experimental values.Comment: 3 page
The First Supernova Explosions in the Universe
We investigate the supernova explosions that end the lives of massive
Population III stars in low-mass minihalos (M~10^6 M_sun) at redshifts z~20.
Employing the smoothed particle hydrodynamics method, we carry out numerical
simulations in a cosmological set-up of pair-instability supernovae with
explosion energies of E_SN=10^51 and 10^53 ergs. We find that the more
energetic explosion leads to the complete disruption of the gas in the
minihalo, whereas the lower explosion energy leaves much of the halo intact.
The higher energy supernova expels > 90% of the stellar metals into a region ~1
kpc across over a timescale of 3-5 Myr. Due to this burst-like initial star
formation episode, a large fraction of the universe could have been endowed
with a metallicity floor, Z_min>10^-4 Z_sun, already at z>15.Comment: Published in ApJ Letter
Simulation tools for future interferometers
For the design and commissioning of the LIGO interferometer, simulation tools have been used explicitly and implicitly. The requirement of the advanced LIGO interferometer is much more demanding than the first generation interferometer. Development of revised simulation tools for future interferometers are underway in the LIGO Laboratory. The outline of those simulation tools and applications are discussed
A search for x-ray counterparts of gamma-ray bursts with the ROSAT PSPC
We search for faint X-ray bursts with duration 10--300 seconds in the ROSAT
PSPC pointed observations with a total exposure of 1.6e7 seconds. We do not
detect any events shorter than ~100s, i.e. those that could be related to the
classic gamma-ray bursts. At the same time, we detect a number of long flares
with durations of several hundred seconds. Most, but not all, of the long
flares are associated with stars. If even a small number of those long flares,
that cannot identified with stars, are X-ray afterglows of GRB, the number of
X-ray afterglows greatly exceeds the number of BATSE GRB. This would imply that
the beaming factor of gamma-rays from the burst should be >100. The
non-detection of any short bursts in our data constrains the GRB counts at the
fluences 1--2.5 orders of magnitude below the BATSE limit. The constrained
burst counts are consistent with the extrapolation of the BATSE log N - log S
relation. Finally, our results do not confirm a reality of short X-ray flashes
found in the Einstein IPC data by Gotthelf, Hamilton and Helfand.Comment: Accepted to ApJ Letters. 4 pages with 3 figures, LaTeX2
Rossby-Haurwitz waves of a slowly and differentially rotating fluid shell
Recent studies have raised doubts about the occurrence of r modes in
Newtonian stars with a large degree of differential rotation. To assess the
validity of this conjecture we have solved the eigenvalue problem for
Rossby-Haurwitz waves (the analogues of r waves on a thin-shell) in the
presence of differential rotation. The results obtained indicate that the
eigenvalue problem is never singular and that, at least for the case of a
thin-shell, the analogues of r modes can be found for arbitrarily large degrees
of differential rotation. This work clarifies the puzzling results obtained in
calculations of differentially rotating axi-symmetric Newtonian stars.Comment: 8pages, 3figures. Submitted to CQ
Ultralong-Range Rydberg Molecules in a Divalent-Atomic System
We report the creation of ultralong-range Sr molecules comprising one
ground-state atom and one atom in a Rydberg state
for ranging from 29 to 36. Molecules are created in a trapped ultracold
atomic gas using two-photon excitation near resonant with the
intermediate state, and their formation is detected through ground-state atom
loss from the trap. The observed molecular binding energies are fit with the
aid of first-order perturbation theory that utilizes a Fermi pseudopotential
with effective -wave and -wave scattering lengths to describe the
interaction between an excited Rydberg electron and a ground-state Sr atom.Comment: 5 pages, 2 figure
Relativistic r-modes in Slowly Rotating Neutron Stars: Numerical Analysis in the Cowling Approximation
We investigate the properties of relativistic -modes of slowly rotating
neutron stars by using a relativistic version of the Cowling approximation. In
our formalism, we take into account the influence of the Coriolis like force on
the stellar oscillations, but ignore the effects of the centrifugal like force.
For three neutron star models, we calculated the fundamental -modes with
and 3. We found that the oscillation frequency of the
fundamental -mode is in a good approximation given by , where is defined in the corotating frame at the
spatial infinity, and is the angular frequency of rotation of the
star. The proportional coefficient is only weakly dependent on
, but it strongly depends on the relativistic parameter ,
where and are the mass and the radius of the star. All the fundamental
-modes with computed in this study are discrete modes with distinct
regular eigenfunctions, and they all fall in the continuous part of the
frequency spectrum associated with Kojima's equation (Kojima 1998). These
relativistic -modes are obtained by including the effects of rotation higher
than the first order of so that the buoyant force plays a role, the
situation of which is quite similar to that for the Newtonian -modes.Comment: 22 pages, 8 figures, accepted for publication in Ap
Invariants of Collective Neutrino Oscillations
We consider the flavor evolution of a dense neutrino gas by taking into
account both vacuum oscillations and self interactions of neutrinos. We examine
the system from a many-body perspective as well as from the point of view of an
effective one-body description formulated in terms of the neutrino polarization
vectors. We show that, in the single angle approximation, both the many-body
picture and the effective one-particle picture possess several constants of
motion. We write down these constants of motion explicitly in terms of the
neutrino isospin operators for the many-body case and in terms of the
polarization vectors for the effective one-body case. The existence of these
constants of motion is a direct consequence of the fact that the collective
neutrino oscillation Hamiltonian belongs to the class of Gaudin Hamiltonians.
This class of Hamiltonians also includes the (reduced) BCS pairing Hamiltonian
describing superconductivity. We point out the similarity between the
collective neutrino oscillation Hamiltonian and the BCS pairing Hamiltonian.
The constants of motion manifest the exact solvability of the system. Borrowing
the well established techniques of calculating the exact BCS spectrum, we
present exact eigenstates and eigenvalues of both the many-body and the
effective one-particle Hamiltonians describing the collective neutrino
oscillations. For the effective one-body case, we show that spectral splits of
neutrinos can be understood in terms of the adiabatic evolution of some
quasi-particle degrees of freedom from a high density region where they
coincide with flavor eigenstates to the vacuum where they coincide with mass
eigenstates. We write down the most general consistency equations which should
be satisfied by the effective one-body eigenstates and show that they reduce to
the spectral split consistency equations for the appropriate initial
conditions.Comment: 26 pages with one figure. Published versio
V-V Bond-Length Fluctuations in Vox
We report a significantly stronger suppression of the phonon contribution to
the thermal conductivity in VOx than can be accounted for by disorder of the 16
% atomic vacancies present in VO. Since the transition from localized to
itinerant electronic behavior is first-order and has been shown to be
characterized by bond-length fluctuations in several transition-metal oxides
with the perovskite structure, we propose that cooperative V-V bond-length
fluctuations play a role in VO similar to the M-O bond-length fluctuations in
the perovskites. This model is able to account for the strong suppression of
the thermal conductivity, the existence of a pseudogap confirmed by
thermoelectric power, an anomalously large Debye-Waller factor, the temperature
dependence of the magnetic susceptibility, and the inability to order atomic
vacancies in VO.Comment: 5 pages, 5 figure
- …
