74 research outputs found

    Using Regular Languages to Explore the Representational Capacity of Recurrent Neural Architectures

    Get PDF
    The presence of Long Distance Dependencies (LDDs) in sequential data poses significant challenges for computational models. Various recurrent neural architectures have been designed to mitigate this issue. In order to test these state-of-the-art architectures, there is growing need for rich benchmarking datasets. However, one of the drawbacks of existing datasets is the lack of experimental control with regards to the presence and/or degree of LDDs. This lack of control limits the analysis of model performance in relation to the specific challenge posed by LDDs. One way to address this is to use synthetic data having the properties of subregular languages. The degree of LDDs within the generated data can be controlled through the k parameter, length of the generated strings, and by choosing appropriate forbidden strings. In this paper, we explore the capacity of different RNN extensions to model LDDs, by evaluating these models on a sequence of SPk synthesized datasets, where each subsequent dataset exhibits a longer degree of LDD. Even though SPk are simple languages, the presence of LDDs does have significant impact on the performance of recurrent neural architectures, thus making them prime candidate in benchmarking tasks.Comment: International Conference of Artificial Neural Networks (ICANN) 201

    Hybrid Models for Learning to Branch

    Full text link
    A recent Graph Neural Network (GNN) approach for learning to branch has been shown to successfully reduce the running time of branch-and-bound algorithms for Mixed Integer Linear Programming (MILP). While the GNN relies on a GPU for inference, MILP solvers are purely CPU-based. This severely limits its application as many practitioners may not have access to high-end GPUs. In this work, we ask two key questions. First, in a more realistic setting where only a CPU is available, is the GNN model still competitive? Second, can we devise an alternate computationally inexpensive model that retains the predictive power of the GNN architecture? We answer the first question in the negative, and address the second question by proposing a new hybrid architecture for efficient branching on CPU machines. The proposed architecture combines the expressive power of GNNs with computationally inexpensive multi-linear perceptrons (MLP) for branching. We evaluate our methods on four classes of MILP problems, and show that they lead to up to 26% reduction in solver running time compared to state-of-the-art methods without a GPU, while extrapolating to harder problems than it was trained on.Comment: Preprint. Under revie

    Enhancing network embedding with implicit clustering

    Get PDF
    Network embedding aims at learning the low dimensional representation of nodes. These representations can be widely used for network mining tasks, such as link prediction, anomaly detection, and classification. Recently, a great deal of meaningful research work has been carried out on this emerging network analysis paradigm. The real- world network contains different size clusters because of the edges with different relationship types. These clusters also reflect some features of nodes, which can contribute to the optimization of the feature representation of nodes. However, existing network embedding methods do not distinguish these relationship types. In this paper, we propose an unsupervised network representation learning model that can encode edge relationship information. Firstly, an objective function is defined, which can learn the edge vectors by implicit clustering. Then, a biased random walk is designed to generate a series of node sequences, which are put into Skip-Gram to learn the low dimensional node representations. Extensive experiments are conducted on several network datasets. Compared with the state-of-art baselines, the proposed method is able to achieve favorable and stable results in multi-label classification and link prediction tasks

    The Genomic Alterations in Glioblastoma Influence the Levels of CSF Metabolites

    Get PDF
    Cerebrospinal fluid (CSF) analysis is underutilized in patients with glioblastoma (GBM), partly due to a lack of studies demonstrating the clinical utility of CSF biomarkers. While some studies show the utility of CSF cell-free DNA analysis, studies analyzing CSF metabolites in patients with glioblastoma are limited. Diffuse gliomas have altered cellular metabolism. For example, mutations in isocitrate dehydrogenase enzymes (e.g., IDH1 and IDH2) are common in diffuse gliomas and lead to increased levels of D-2-hydroxyglutarate in CSF. However, there is a poor understanding of changes CSF metabolites in GBM patients. In this study, we performed targeted metabolomic analysis of CSF from n = 31 patients with GBM and n = 13 individuals with non-neoplastic conditions (controls), by mass spectrometry. Hierarchical clustering and sparse partial least square-discriminant analysis (sPLS-DA) revealed differences in CSF metabolites between GBM and control CSF, including metabolites associated with fatty acid oxidation and the gut microbiome (i.e., carnitine, 2-methylbutyrylcarnitine, shikimate, aminobutanal, uridine, N-acetylputrescine, and farnesyl diphosphate). In addition, we identified differences in CSF metabolites in GBM patients based on the presence/absence of TP53 or PTEN mutations, consistent with the idea that different mutations have different effects on tumor metabolism. In summary, our results increase the understanding of CSF metabolites in patients with diffuse gliomas and highlight several metabolites that could be informative biomarkers in patients with GBM

    BigBrain 3D atlas of cortical layers: Cortical and laminar thickness gradients diverge in sensory and motor cortices.

    Get PDF
    Histological atlases of the cerebral cortex, such as those made famous by Brodmann and von Economo, are invaluable for understanding human brain microstructure and its relationship with functional organization in the brain. However, these existing atlases are limited to small numbers of manually annotated samples from a single cerebral hemisphere, measured from 2D histological sections. We present the first whole-brain quantitative 3D laminar atlas of the human cerebral cortex. It was derived from a 3D histological atlas of the human brain at 20-micrometer isotropic resolution (BigBrain), using a convolutional neural network to segment, automatically, the cortical layers in both hemispheres. Our approach overcomes many of the historical challenges with measurement of histological thickness in 2D, and the resultant laminar atlas provides an unprecedented level of precision and detail. We utilized this BigBrain cortical atlas to test whether previously reported thickness gradients, as measured by MRI in sensory and motor processing cortices, were present in a histological atlas of cortical thickness and which cortical layers were contributing to these gradients. Cortical thickness increased across sensory processing hierarchies, primarily driven by layers III, V, and VI. In contrast, motor-frontal cortices showed the opposite pattern, with decreases in total and pyramidal layer thickness from motor to frontal association cortices. These findings illustrate how this laminar atlas will provide a link between single-neuron morphology, mesoscale cortical layering, macroscopic cortical thickness, and, ultimately, functional neuroanatomy

    A community effort in SARS-CoV-2 drug discovery.

    Get PDF
    peer reviewedThe COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against Covid-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.R-AGR-3826 - COVID19-14715687-CovScreen (01/06/2020 - 31/01/2021) - GLAAB Enric

    An Alternative Deep Model for Turn-Based Conversations

    No full text

    Orbital and nasal meningoencephaloceles secondary to chronic hydrocephalus: A rare cause of bilateral proptosis

    Full text link
    Introduction Orbital meningoencephalocele formation is primarily a result of congenital defects in the pediatric population and trauma of the anterior cranial fossa in adults. We present a unique case of nontraumatic nasal and orbital meningoencephaloceles presenting as bilateral proptosis with exotropia secondary to chronic hydrocephalus. Clinical presentation A 20-year-old male with a history of tuberous sclerosis, X-linked intellectual disability, and epilepsy presented to the emergency department with two days of nausea, emesis, seizures, and two months of progressive proptosis. Initial radiographs of the skull showed a “copper beaten” appearance, indicating chronically elevated intracranial pressure. Computed tomography imaging of the head demonstrated bilateral defects in the cribriform plate and anterior cranial fossa. Magnetic resonance imaging of the brain revealed triventricular hydrocephalus with meningoencephalocele extension into the nasal cavity and frontal horn herniation into the extraconal space of the orbits. The hydrocephalus was managed with ventriculoperitoneal shunt placement with rapid and complete resolution of the proptosis. Conclusion No reports have described bilateral proptosis as the presenting finding of orbital and nasal meningoencephaloceles in the absence of trauma or congenital defect. This case study demonstrates the management of meningoencephalocele formation secondary to chronic hydrocephalus. </jats:sec
    corecore