23,992 research outputs found
The Case for Future Hadron Colliders From Decays
Recent measurements in decays are somewhat
discrepant with Standard Model predictions. They may be harbingers of new
physics at an energy scale potentially accessible to direct discovery. We
estimate the sensitivity of future hadron colliders to the possible new
particles that may be responsible for the anomalies: leptoquarks or
s. We consider luminosity upgrades for a 14 TeV LHC, a 33 TeV LHC,
and a 100 TeV collider such as the FCC-hh. Coverage of models
is excellent: for narrow particles, with perturbative couplings that may
explain the -decay results for masses up to 20 TeV, a 33 TeV 1
ab LHC is expected to cover most of the parameter space up to 8 TeV in
mass, whereas the 100 TeV FCC-hh with 10 ab will cover all of it. A
smaller portion of the leptoquark parameter space is covered by future
colliders: for example, in a di-leptoquark search, a 100 TeV 10
ab collider has a projected sensitivity up to leptoquark masses of 12
TeV (extendable to 21 TeV with a strong coupling for single leptoquark
production), whereas leptoquark masses up to 41 TeV may in principle explain
the anomalies.Comment: 24 pages, 10 figures. v2: Improved discussion and references added,
version submitted to JHE
The appearance of non-spherical systems. Application to LMXB
We study the appearance of the neutron star - accretion disk system as seen
by a distant observer in the UV/X-ray domain. The observed intensity spectra
are computed assuming non-spherical geometry of the whole system, in which
outgoing spectrum is not represented by the flux spectrum, the latter being
valid for spherically symmetric objects. Intensity spectra of our model display
double bumps in UV/X-ray energy domains. Such structure is caused by the fact
that the the source is not spherically symmetric, and the proper integration of
intensity over emitted area is needed to reproduce observed spectral shape.
Relative normalization of double bump is self consistently computed by our
model. X-ray spectra of such a type were often observed in LMXB with accretion
disk, ultra luminous X-ray sources, and accreting black hole systems with hot
inner compact corona. Our model naturally explains high energy broadening of
the disk spectrum observed in some binaries. We attempted to fit our model to
X-ray data of XTE~J1709-267 from {\it XMM-Newton}. Unfortunately, the double
intensity bump predicted by our model for LMXB is located in soft X-ray domain,
uncovered by existing data for this source.Comment: 10 pages, 4 figures, submitted to Acta Astronomica, comments are
wellcom
An opioid-like system regulating feeding behavior in C. elegans
Neuropeptides are essential for the regulation of appetite. Here we show that neuropeptides could regulate feeding in mutants that lack neurotransmission from the motor neurons that stimulate feeding muscles. We identified nlp-24 by an RNAi screen of 115 neuropeptide genes, testing whether they affected growth. NLP-24 peptides have a conserved YGGXX sequence, similar to mammalian opioid neuropeptides. In addition, morphine and naloxone respectively stimulated and inhibited feeding in starved worms, but not in worms lacking NPR-17, which encodes a protein with sequence similarity to opioid receptors. Opioid agonists activated heterologously expressed NPR-17, as did at least one NLP-24 peptide. Worms lacking the ASI neurons, which express npr-17, did not response to naloxone. Thus, we suggest that Caenorhabditis elegans has an endogenous opioid system that acts through NPR-17, and that opioids regulate feeding via ASI neurons. Together, these results suggestC. elegans may be the first genetically tractable invertebrate opioid model
Spatio-Temporal Sentiment Hotspot Detection Using Geotagged Photos
We perform spatio-temporal analysis of public sentiment using geotagged photo
collections. We develop a deep learning-based classifier that predicts the
emotion conveyed by an image. This allows us to associate sentiment with place.
We perform spatial hotspot detection and show that different emotions have
distinct spatial distributions that match expectations. We also perform
temporal analysis using the capture time of the photos. Our spatio-temporal
hotspot detection correctly identifies emerging concentrations of specific
emotions and year-by-year analyses of select locations show there are strong
temporal correlations between the predicted emotions and known events.Comment: To appear in ACM SIGSPATIAL 201
Entanglement and spin squeezing properties for three bosons in two modes
We discuss the canonical form for a pure state of three identical bosons in
two modes, and classify its entanglement correlation into two types, the
analogous GHZ and the W types as well known in a system of three
distinguishable qubits. We have performed a detailed study of two important
entanglement measures for such a system, the concurrence and the
triple entanglement measure . We have also calculated explicitly the spin
squeezing parameter and the result shows that the W state is the most
``anti-squeezing'' state, for which the spin squeezing parameter cannot be
regarded as an entanglement measure.Comment: 7 pages, 6 figures; corrected figure sequence. Thanks to Dr. Han P
The properties of active galaxies at the extreme of eigenvector 1
Eigenvector 1 (EV1) is the formal parameter which allows the introduction of
some order in the properties of the unobscured type 1 active galaxies. We aim
to understand the nature of this parameter by analyzing the most extreme
examples of quasars with the highest possible values of the corresponding
eigenvalues . We selected the appropriate sources from the Sloan
Digital Sky Survey (SDSS) and performed detailed modeling, including various
templates for the Fe II pseudo-continuum and the starlight contribution to the
spectrum. Out of 27 sources with larger than 1.3 and with the
measurement errors smaller than 20\% selected from the SDSS quasar catalog,
only six sources were confirmed to have a high value of , defined as
being above 1.3. All other sources have of approximately 1. Three
of the high objects have a very narrow H line, below 2100 km
s but three sources have broad lines, above 4500 km s, that do
not seem to form a uniform group, differing considerably in black hole mass and
Eddington ratio; they simply have a very similar EW([OIII]5007) line.
Therefore, the interpretation of the EV1 remains an open issue.Comment: Astronomy and Astrophysics (in press
Entanglement between two fermionic atoms inside a cylindrical harmonic trap
We investigate quantum entanglement between two (spin-1/2) fermions inside a
cylindrical harmonic trap, making use of the von Neumann entropy for the
reduced single particle density matrix as the pure state entanglement measure.
We explore the dependence of pair entanglement on the geometry and strength of
the trap and on the strength of the pairing interaction over the complete range
of the effective BCS to BEC crossover. Our result elucidates an interesting
connection between our model system of two fermions and that of two interacting
bosons.Comment: to appear in PR
- …
