4,015 research outputs found
On the Complexity of Temporal-Logic Path Checking
Given a formula in a temporal logic such as LTL or MTL, a fundamental problem
is the complexity of evaluating the formula on a given finite word. For LTL,
the complexity of this task was recently shown to be in NC. In this paper, we
present an NC algorithm for MTL, a quantitative (or metric) extension of LTL,
and give an NCC algorithm for UTL, the unary fragment of LTL. At the time of
writing, MTL is the most expressive logic with an NC path-checking algorithm,
and UTL is the most expressive fragment of LTL with a more efficient
path-checking algorithm than for full LTL (subject to standard
complexity-theoretic assumptions). We then establish a connection between LTL
path checking and planar circuits, which we exploit to show that any further
progress in determining the precise complexity of LTL path checking would
immediately entail more efficient evaluation algorithms than are known for a
certain class of planar circuits. The connection further implies that the
complexity of LTL path checking depends on the Boolean connectives allowed:
adding Boolean exclusive or yields a temporal logic with P-complete
path-checking problem
Study on moving direction and survival index of Persian sturgeon (Acipenser persicus) fingerlings using mark-recapture method in Caspian Sea (Guilan province coasts)
To study moving direction and survival index of Persian sturgeon fingerlings, a total of 390200 individuals of the fish in three weight classes: less than 3g, 3 to 5g and 6 to10g were marked by coded wire tags (CWT) during 2003 to 2008. In 2003, 101500 of these individuals were marked in Shahid Beheshti, Shahid Rajaee and Shahid Marjani Sturgeon Rearing Centers, in north of Iran and then released in Sephidrud, Tajan and Gorganrud rivers. During 2004 to 2008, 288700 pieces were marked by Shahid Beheshti Rearing Centers and released in Sephidrud River. Catch and detection of fingerlings carried out by gill net prepared from nylon with mesh sizes 22, 26, 33 (2 filaments for each mesh) and one 40mm mesh size. Totally, 175 meters of net was used to study fishes in waters under 10m depth in Guilan province. In all, 2827 pieces of this fish were caught of which 40 had CWT and these belonged to weight classes 6-10g (22 pieces), 3-5g (17 pieces) and under 3g (one piece). Results on release and catch of the fingerlings for Sephirud River showed that more than 70% of fingerlings moved to eastern parts of the estuary and eastern coasts of Guilan province (stations like 12 Bahman, Dastak and Chaboksar). Of the fingerlings released in Gorganrud and Tajan rivers, only one piece was caught in Chaboksar and another in Lisar after 15 months. Hence, we postulated that the fingerlings released in Mazandaran and Golestan provices migrated to Guilan province coasts. Statistical analysis of the survival index in different weight classes indicated that the class 6-10g had higher survival rate, twice than class 3-5g and 20 times more than that of the class under 3g. Considering these results, probably the higher weight at release time can be effective in increasing the survival rate of the Persian sturgeon fingerlings
Geodesic Warps by Conformal Mappings
In recent years there has been considerable interest in methods for
diffeomorphic warping of images, with applications e.g.\ in medical imaging and
evolutionary biology. The original work generally cited is that of the
evolutionary biologist D'Arcy Wentworth Thompson, who demonstrated warps to
deform images of one species into another. However, unlike the deformations in
modern methods, which are drawn from the full set of diffeomorphism, he
deliberately chose lower-dimensional sets of transformations, such as planar
conformal mappings.
In this paper we study warps of such conformal mappings. The approach is to
equip the infinite dimensional manifold of conformal embeddings with a
Riemannian metric, and then use the corresponding geodesic equation in order to
obtain diffeomorphic warps. After deriving the geodesic equation, a numerical
discretisation method is developed. Several examples of geodesic warps are then
given. We also show that the equation admits totally geodesic solutions
corresponding to scaling and translation, but not to affine transformations
Statistical M-Estimation and Consistency in Large Deformable Models for Image Warping
The problem of defining appropriate distances between shapes or images and modeling the variability of natural images by group transformations is at the heart of modern image analysis. A current trend is the study of probabilistic and statistical aspects of deformation models, and the development of consistent statistical procedure for the estimation of template images. In this paper, we consider a set of images randomly warped from a mean template which has to be recovered. For this, we define an appropriate statistical parametric model to generate random diffeomorphic deformations in two-dimensions. Then, we focus on the problem of estimating the mean pattern when the images are observed with noise. This problem is challenging both from a theoretical and a practical point of view. M-estimation theory enables us to build an estimator defined as a minimizer of a well-tailored empirical criterion. We prove the convergence of this estimator and propose a gradient descent algorithm to compute this M-estimator in practice. Simulations of template extraction and an application to image clustering and classification are also provided
Ka-Band Site Characterization of the NASA Near Earth Network in Svalbard, Norway
Critical to NASA s rapid migration toward Ka-Band is the comprehensive characterization of the communication channels at NASA's ground sites to determine the effects of the atmosphere on signal propagation and the network's ability to support various classes of users in different orbits. Accordingly, NASA has initiated a number of studies involving the ground sites of its Near Earth and Deep Space Networks. Recently, NASA concluded a memorandum of agreement (MOA) with the Norwegian Space Centre of the Kingdom of Norway and began a joint site characterization study to determine the atmospheric effects on Ka-Band links at the Svalbard Satellite Station in Norway, which remains a critical component of NASA s Near Earth Communication Network (NEN). System planning and design for Ka-band links at the Svalbard site cannot be optimally achieved unless measured attenuation statistics (e.g. cumulative distribution functions (CDF)) are obtained. In general, the CDF will determine the necessary system margin and overall system availability due to the atmospheric effects. To statistically characterize the attenuation statistics at the Svalbard site, NASA has constructed a ground-based monitoring station consisting of a multi-channel total power radiometer (25.5 - 26.5 GHz) and a weather monitoring station to continuously measure (at 1 second intervals) attenuation and excess noise (brightness temperature). These instruments have been tested in a laboratory environment as well as in an analogous outdoor climate (i.e. winter in Northeast Ohio), and the station was deployed in Svalbard, Norway in May 2011. The measurement campaign is planned to last a minimum of 3 years but not exceeding a maximum of 5 years
Statistical properties of Pu, and Pu(n,) cross section calculation
The level density and gamma-ray strength function (gammaSF) of 243Pu have
been measured in the quasi-continuum using the Oslo method. Excited states in
243Pu were populated using the 242Pu(d,p) reaction. The level density closely
follows the constant-temperature level density formula for excitation energies
above the pairing gap. The gammaSF displays a double-humped resonance at low
energy as also seen in previous investigations of actinide isotopes. The
structure is interpreted as the scissors resonance and has a centroid of
omega_{SR}=2.42(5)MeV and a total strength of B_{SR}=10.1(15)mu_N^2, which is
in excellent agreement with sum-rule estimates. The measured level density and
gammaSF were used to calculate the 242Pu(n,gamma) cross section in a neutron
energy range for which there were previously no measured data.Comment: 9 pages, 8 figure
Computing Nash Equilibrium in Wireless Ad Hoc Networks: A Simulation-Based Approach
This paper studies the problem of computing Nash equilibrium in wireless
networks modeled by Weighted Timed Automata. Such formalism comes together with
a logic that can be used to describe complex features such as timed energy
constraints. Our contribution is a method for solving this problem using
Statistical Model Checking. The method has been implemented in UPPAAL model
checker and has been applied to the analysis of Aloha CSMA/CD and IEEE 802.15.4
CSMA/CA protocols.Comment: In Proceedings IWIGP 2012, arXiv:1202.422
- …
