7,502 research outputs found
Pulsar electrodynamics revisited
The inductive electric field is unjustifiably neglected in most models for
pulsar electrodynamics; it cannot be screened by the magnetospheric plasma, and
it is not small in comparison with the corotation electric field. The
perpendicular component of the inductive electric field implies a drift motion
that is inconsistent with corotation at any angular velocity. Some implications
of the inductive electric field and the associated drift motion are discussed.Comment: 4 page
Perfect zero knowledge for quantum multiprover interactive proofs
In this work we consider the interplay between multiprover interactive
proofs, quantum entanglement, and zero knowledge proofs - notions that are
central pillars of complexity theory, quantum information and cryptography. In
particular, we study the relationship between the complexity class MIP, the
set of languages decidable by multiprover interactive proofs with quantumly
entangled provers, and the class PZKMIP, which is the set of languages
decidable by MIP protocols that furthermore possess the perfect zero
knowledge property.
Our main result is that the two classes are equal, i.e., MIP
PZKMIP. This result provides a quantum analogue of the celebrated result of
Ben-Or, Goldwasser, Kilian, and Wigderson (STOC 1988) who show that MIP
PZKMIP (in other words, all classical multiprover interactive protocols can be
made zero knowledge). We prove our result by showing that every MIP
protocol can be efficiently transformed into an equivalent zero knowledge
MIP protocol in a manner that preserves the completeness-soundness gap.
Combining our transformation with previous results by Slofstra (Forum of
Mathematics, Pi 2019) and Fitzsimons, Ji, Vidick and Yuen (STOC 2019), we
obtain the corollary that all co-recursively enumerable languages (which
include undecidable problems as well as all decidable problems) have zero
knowledge MIP protocols with vanishing promise gap
Visibility of pulsar emission: motion of the visible point
A standard model for the visibility of pulsar radio emission is based on the
assumption that the emission is confined to a narrow cone about the tangent to
a dipolar field line. The widely accepted rotating vector model (RVM) is an
approximation in which the line of sight is fixed and the field line is not
strictly tangent to it. We refer to an exact treatment (Gangadhara 2004) as the
tangent model. In the tangent model (but not in the RVM) the visible point
changes as a function of pulsar rotational phase, , defining a trajectory
on a sphere of radius . We solve for the trajectory and for the angular
velocity of the visible point around it. We note the recent claim that this
motion is observable using interstellar holography (Pen et al. 2014). We
estimate the error introduced by use of the RVM and find that it is significant
for pulsars with emission over a wide range of . The RVM tends to
underestimate the range of over which emission is visible. We suggest
that the geometry alone strongly favors the visible pulsar radio being emitted
at a heights more than ten percent of the light-cylinder distance, where our
neglect of retardation effects becomes significant.Comment: Accepted for publication in PAS
Energy Management for a User Interactive Smart Community: A Stackelberg Game Approach
This paper studies a three party energy management problem in a user
interactive smart community that consists of a large number of residential
units (RUs) with distributed energy resources (DERs), a shared facility
controller (SFC) and the main grid. A Stackelberg game is formulated to benefit
both the SFC and RUs, in terms of incurred cost and achieved utility
respectively, from their energy trading with each other and the grid. The
properties of the game are studied and it is shown that there exists a unique
Stackelberg equilibrium (SE). A novel algorithm is proposed that can be
implemented in a distributed fashion by both RUs and the SFC to reach the SE.
The convergence of the algorithm is also proven, and shown to always reach the
SE. Numerical examples are used to assess the properties and effectiveness of
the proposed scheme.Comment: 6 pages, 4 figure
Prenatal programming of postnatal obesity: fetal nutrition and the regulation of leptin synthesis and secretion before birth
Exposure to either an increased or decreased level of intrauterine nutrition can result in an increase in adiposity and in circulating leptin concentrations in later life. In animals such as the sheep and pig in which fat is deposited before birth, leptin is synthesised in fetal adipose tissue and is present in the fetal circulation throughout late gestation. In the sheep a moderate increase or decrease in the level of maternal nutrition does not alter fetal plasma leptin concentrations, but there is evidence that chronic fetal hyperglycaemia and hyperinsulinaemia increase fetal fat mass and leptin synthesis within fetal fat depots. Importantly, there is a positive relationship between the relative mass of the ‘unilocular’ component of fetal perirenal and interscapular adipose tissue and circulating fetal leptin concentrations in the sheep. Thus, as in the neonate and adult, circulating leptin concentrations may be a signal of fat mass in fetal life. There is also evidence that leptin can act to regulate the lipid storage, leptin synthetic capacity and potential thermogenic functions of fat before birth. Thus, leptin may act as a signal of energy supply and have a ‘lipostatic’ role before birth. Future studies are clearly required to determine whether the intrauterine and early postnatal nutrient environment programme the endocrine feedback loop between adipose tissue and the central and peripheral neuroendocrine systems that regulate energy balance, resulting in an enhanced risk of obesity in adult life.I. C. McMillen, B. S. Muhlhausler, J. A. Duffield and B. S. J. Yue
Efficient measurements, purification, and bounds on the mutual information
When a measurement is made on a quantum system in which classical information
is encoded, the measurement reduces the observers average Shannon entropy for
the encoding ensemble. This reduction, being the {\em mutual information}, is
always non-negative. For efficient measurements the state is also purified;
that is, on average, the observers von Neumann entropy for the state of the
system is also reduced by a non-negative amount. Here we point out that by
re-writing a bound derived by Hall [Phys. Rev. A {\bf 55}, 100 (1997)], which
is dual to the Holevo bound, one finds that for efficient measurements, the
mutual information is bounded by the reduction in the von Neumann entropy. We
also show that this result, which provides a physical interpretation for Hall's
bound, may be derived directly from the Schumacher-Westmoreland-Wootters
theorem [Phys. Rev. Lett. {\bf 76}, 3452 (1996)]. We discuss these bounds, and
their relationship to another bound, valid for efficient measurements on pure
state ensembles, which involves the subentropy.Comment: 4 pages, Revtex4. v3: rewritten and reinterpreted somewha
- …
