395 research outputs found
Consequences of a Change in the Galactic Environment of the Sun
The interaction of the heliosphere with interstellar clouds has attracted
interest since the late 1920's, both with a view to explaining apparent
quasi-periodic climate "catastrophes" as well as periodic mass extinctions.
Until recently, however, models describing the solar wind - local interstellar
medium (LISM) interaction self-consistently had not been developed. Here, we
describe the results of a two-dimensional (2D) simulation of the interaction
between the heliosphere and an interstellar cloud with the same properties as
currently, except that the neutral H density is increased from the present
value of n(H) ~ 0.2 cm^-3 to 10 cm^-3. The mutual interaction of interstellar
neutral hydrogen and plasma is included. The heliospheric cavity is reduced
considerably in size (approximately 10 - 14 AU to the termination shock in the
upstream direction) and is highly dynamical. The interplanetary environment at
the orbit of the Earth changes markedly, with the density of interstellar H
increasing to ~2 cm^-3. The termination shock itself experiences periods where
it disappears, reforms and disappears again. Considerable mixing of the shocked
solar wind and LISM occurs due to Rayleigh-Taylor-like instabilities at the
nose, driven by ion-neutral friction. Implications for two anomalously high
concentrations of 10Be found in Antarctic ice cores 33 kya and 60 kya, and the
absence of prior similar events, are discussed in terms of density enhancements
in the surrounding interstellar cloud. The calculation presented here supports
past speculation that the galactic environment of the Sun moderates the
interplanetary environment at the orbit of the Earth, and possibly also the
terrestrial climate.Comment: 23 pages, 2 color plates (jpg), 3 figures (eps
Exclusion of Tiny Interstellar Dust Grains from the Heliosphere
The distribution of interstellar dust grains (ISDG) observed in the Solar
System depends on the nature of the interstellar medium-solar wind interaction.
The charge of the grains couples them to the interstellar magnetic field (ISMF)
resulting in some fraction of grains being excluded from the heliosphere while
grains on the larger end of the size distribution, with gyroradii comparable to
the size of the heliosphere, penetrate the termination shock. This results in a
skewing the size distribution detected in the Solar System.
We present new calculations of grain trajectories and the resultant grain
density distribution for small ISDGs propagating through the heliosphere. We
make use of detailed heliosphere model results, using three-dimensional (3-D)
magnetohydrodynamic/kinetic models designed to match data on the shape of the
termination shock and the relative deflection of interstellar neutral H and He
flowing into the heliosphere. We find that the necessary inclination of the
ISMF relative to the inflow direction results in an asymmetry in the
distribution of the larger grains (0.1 micron) that penetrate the heliopause.
Smaller grains (0.01 micron) are completely excluded from the Solar System at
the heliopause.Comment: 5 pages, 5 figures, accepted for publication in the Solar Wind 12
conference proceeding
Anomalous cosmic rays in the heliosheath
We report on Voyager 1 and 2 observations of anomalous cosmic rays in the outer heliosphere. The energy spectrum of anomalous cosmic ray helium as each spacecraft crossed the solar wind termination shock into the heliosheath remained modulated. Assuming the intensity gradient between the two spacecraft is purely radial, we find that radial gradients in the heliosheath of He with 11.6–22.3 MeV/nuc and with ∼61–73MeV/nuc∼61–73 MeV/nuc are 4.9±1.2%/AU4.9±1.2%/AU and 0.0±0.5%/AU,0.0±0.5%/AU, respectively. Strong temporal variations of the 11.6–22.3 MeV/nuc He intensity at both spacecraft were observed in 2005 just after Voyager 1 crossed the termination shock and while Voyager 2 was upstream. After 2006.0, the intensity variations are more moderate and likely due to a combination of spatial and temporal variations. As of early 2008, the anomalous cosmic ray He energy spectrum has unfolded to what may be a source spectrum. The spectrum at Voyager 2 remains modulated. We examine three recent models of the origin of anomalous cosmic rays in light of these observations
Scale dependent alignment between velocity and magnetic field fluctuations in the solar wind and comparisons to Boldyrev's phenomenological theory
(Abridged abstract) A theory of incompressible MHD turbulence recently
developed by Boldyrev predicts the existence of a scale dependent angle of
alignment between velocity and magnetic field fluctuations that is proportional
to the lengthscale of the fluctuations to the power 1/4. In this study, plasma
and magnetic field data from the Wind spacecraft are used to investigate the
angle between velocity and magnetic field fluctuations in the solar wind as a
function of the timescale of the fluctuations and to look for the power law
scaling predicted by Boldyrev.Comment: Particle Acceleration and Transport in the Heliosphere and Beyond,
7th Annual International Astrophysics Conference, Kauai, Hawaii, G. Li, Q.
Hu, O. Verkhoglyadova, G. P. Zank, R. P. Lin, J. Luhmann (eds), AIP
Conference Proceedings 1039, 81-8
Dust Dynamics in Compressible MHD Turbulence
We calculate the relative grain-grain motions arising from interstellar
magnetohydrodynamic (MHD) turbulence. The MHD turbulence includes both fluid
motions and magnetic fluctuations. While the fluid motions accelerate grains
through hydro-drag, the electromagnetic fluctuations accelerate grains through
resonant interactions. We consider both incompressive (Alfv\'{e}n) and
compressive (fast and slow) MHD modes and use descriptions of MHD turbulence
obtained in Cho & Lazarian (2002). Calculations of grain relative motion are
made for realistic grain charging and interstellar turbulence that is
consistent with the velocity dispersions observed in diffuse gas, including
cutoff of the turbulence from various damping processes. We show that fast
modes dominate grain acceleration, and can drive grains to supersonic
velocities. Grains are also scattered by gyroresonance interactions, but the
scattering is less important than acceleration for grains moving with
sub-Alfv\'{e}nic velocities. Since the grains are preferentially accelerated
with large pitch angles, the supersonic grains will be aligned with long axes
perpendicular to the magnetic field. We compare grain velocities arising from
MHD turbulence with those arising from photoelectric emission, radiation
pressure and H thrust. We show that for typical interstellar conditions
turbulence should prevent these mechanisms from segregating small and large
grains. Finally, gyroresonant acceleration is bound to preaccelerate grains
that are further accelerated in shocks. Grain-grain collisions in the shock may
then contribute to the overabundance of refractory elements in the composition
of galactic cosmic rays.Comment: 15 pages, 17 figure
Towards a Simple Model of Compressible Alfvenic Turbulence
A simple model collisionless, dissipative, compressible MHD (Alfvenic)
turbulence in a magnetized system is investigated. In contrast to more familiar
paradigms of turbulence, dissipation arises from Landau damping, enters via
nonlinearity, and is distributed over all scales. The theory predicts that two
different regimes or phases of turbulence are possible, depending on the ratio
of steepening to damping coefficient (m_1/m_2). For strong damping
(|m_1/m_2|<1), a regime of smooth, hydrodynamic turbulence is predicted. For
|m_1/m_2|>1, steady state turbulence does not exist in the hydrodynamic limit.
Rather, spikey, small scale structure is predicted.Comment: 6 pages, one figure, REVTeX; this version to be published in PRE. For
related papers, see http://sdphpd.ucsd.edu/~medvedev/papers.htm
Particle acceleration and reconnection in the solar wind
An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized quasi-2D small-scale magnetic island reconnection processes. An advection-diffusion transport equation for a nearly isotropic particle distribution describes particle transport and energization in a region of interacting magnetic islands [1; 2]. The dominant charged particle energization processes are 1) the electric field induced by quasi-2D magnetic island merging, and 2) magnetic island contraction. The acceleration of charged particles in a “sea of magnetic islands” in a super-Alfvénic flow, and the energization of particles by combined diffusive shock acceleration (DSA) and downstream magnetic island reconnection processes are discussed
- …
