174 research outputs found
Absence of CD59 in guinea pigs: Analysis of the Cavia porcellus genome suggests the evolution of a CD59 pseudogene
CD59 is a membrane-bound regulatory protein that inhibits the assembly of the terminal membrane attack complex (C5b-9) of complement. From its original discovery in humans almost 30 years ago, CD59 has been characterized in a variety of species, from primates to early vertebrates, such as teleost fish. CD59 is ubiquitous in mammals; however, we have described circumstantial evidence suggesting that guinea pigs (Cavia porcellus) lack CD59, at least on erythrocytes. In this study, we have used a combination of phylogenetic analyses with syntenic alignment of mammalian CD59 genes to identify the only span of genomic DNA in C. porcellus that is homologous to a portion of mammalian CD59 and show that this segment of DNA is not transcribed. We describe a pseudogene sharing homology to exons 2 through 5 of human CD59 present in the C. porcellus genome. This pseudogene was flanked by C. porcellus homologs of two genes, FBXO3 and ORF91, a relationship and orientation that were consistent with other known mammalian CD59 genes. Analysis using RNA sequencing confirmed that this segment of chromosomal DNA was not transcribed. We conclude that guinea pigs lack an intact gene encoding CD59; to our knowledge, this is the first report of a mammalian species that does not express a functional CD59. The pseudogene we describe is likely the product of a genomic deletion event during its evolutionary divergence from other members of the rodent order
Complement system biomarkers in first episode psychosis
Several lines of evidence implicate immunological/inflammatory factors in development of schizophrenia. Complement
is a key driver of inflammation, and complement dysregulation causes pathology in many diseases. Here
we exploredwhether complement dysregulation occurred in first episode psychosis (FEP) andwhether this provides
a source of biomarkers. Eleven complement analytes (C1q, C3, C4, C5, factor B [FB], terminal complement
complex [TCC], factor H [FH], FH-related proteins [FHR125], Properdin, C1 inhibitor [C1inh], soluble complement
receptor 1 [CR1]) plus C-reactive protein (CRP) were measured in serum from 136 first episode psychosis (FEP)
cases and 42 mentally healthy controls using established in-house or commercial ELISA. The relationship between
caseness and variables (analytes measured, sex, age, ethnicity, tobacco/cannabis smoking) was tested
by multivariate logistic regression.
Whenmeasured individually, only TCC was significantly different between FEP and controls (p=0.01). Stepwise
selection demonstrated interdependence between some variables and revealed other variables that significantly
and independently contributed to distinguishing cases and controls. The finalmodel included demographics (sex,
ethnicity, age, tobacco smoking) and a subset of analytes (C3, C4, C5, TCC, C1inh, FHR125, CR1). A receiver operating
curve analysis combining these variables yielded an area under the curve of 0.79 for differentiating FEP from
controls. This model was confirmed by multiple replications using randomly selected sample subsets.
The data suggest that complement dysregulation occurs in FEP, supporting an underlying immune/inflammatory
component to the disorder. Classification of FEP cases according to biological variables rather than symptoms
would help stratify cases to identify those that might most benefit from therapeuticmodification of the inflammatory
response
Targeting complement in neurodegeneration: challenges, risks, and strategies
For most neurodegenerative diseases (NDDs), therapeutic options are limited, providing symptomatic benefit but not impacting disease progression; new treatments addressing critical effectors in the disease process are needed.
Evidence implicating complement in NDDs has accumulated over the past two decades, establishing complement dysregulation as a driver of pathology and a novel target for therapy in these diseases.
Over the same period, highly effective anticomplement drugs have been developed for therapy of complement dysregulation; however, their use to date has been restricted to rare systemic diseases.
Current anticomplement drugs are not fit for purpose in most NDDs because they do not adequately access the central nervous system (CNS).
Blood–brain barrier-penetrant anticomplement drugs, created either by modifying current drugs or by designing new drugs, could suppress complement dysregulation, neuroinflammation, and neurodegeneration to halt or slow disease progression.
Inhibition of complement is not without risk; this might be particularly the case in the CNS and requires close attention
Monoclonal antibodies capable of inhibiting complement downstream of C5 in multiple species
Better understanding of roles of complement in pathology has fuelled an explosion of interest in complement-targeted therapeutics. The C5-blocking monoclonal antibody (mAb) eculizumab, the first of the new wave of complement blocking drugs, was FDA approved for treatment of Paroxysmal Nocturnal Hemoglobinuria in 2007; its expansion into other diseases has been slow and remains restricted to rare and ultra-rare diseases such as atypical hemolytic uremic syndrome. The success of eculizumab has provoked other Pharma to follow this well-trodden track and made C5 blockade the busiest area of complement drug development. C5 blockade inhibits generation of C5a and C5b, the former an anaphylatoxin, the latter the nidus for formation of the pro-inflammatory membrane attack complex. In order to use anti-complement drugs in common complement-driven diseases, more affordable and equally effective therapeutics are needed. To address this, we explored complement inhibition downstream of C5. Novel blocking mAbs targeting C7 and/or the C5b-7 complex were generated, identified using high throughput functional assays and specificity confirmed by immunochemical assays and surface plasmon resonance (SPR). Selected mAbs were tested in rodents to characterize pharmacokinetics, and therapeutic capacity. Administration of a mouse C7-selective mAb to wildtype mice, or a human C7 specific mAb to C7-deficient mice reconstituted with human C7, completely inhibited serum lytic activity for >48 h. The C5b-7 complex selective mAb 2H2, most active in rat serum, efficiently inhibited serum lytic activity in vivo for over a week from a single low dose (10 mg/kg); this mAb effectively blocked disease and protected muscle endplates from destruction in a rat myasthenia model. Targeting C7 and C7-containing terminal pathway intermediates is an innovative therapeutic approach, allowing lower drug dose and lower product cost, that will facilitate the expansion of complement therapeutics to common diseases
Brain-penetrant complement inhibition mitigates neurodegeneration in an Alzheimer's disease mouse model
Complement activation is implicated in driving brain inflammation, self-cell damage and progression of injury in Alzheimer's disease and other neurodegenerative diseases. Here, we investigate the impact of brain delivery of a complement-blocking antibody on neurodegeneration in an Alzheimer's mouse model. We engineered a brain-penetrant recombinant antibody targeting the pro-inflammatory membrane attack complex. Systemic administration of this antibody in APPNL-G-F mice reduced brain levels of complement activation products, demonstrating successful brain entry and target engagement. Prolonged treatment decreased synapse loss, amyloid burden and brain inflammatory cytokine levels, concomitant with cognitive improvement compared to controls. These results underscore the potential of brain-penetrant complement-inhibiting drugs as promising therapeutics, targeting downstream of amyloid plaques in Alzheimer's disease
An exploration of influences on women’s birthplace decision-making in New Zealand: a mixed methods prospective cohort within the Evaluating Maternity Units study
BACKGROUND: There is worldwide debate surrounding the safety and appropriateness of different birthplaces for well women. One of the primary objectives of the Evaluating Maternity Units prospective cohort study was to compare the clinical outcomes for well women, intending to give birth in either an obstetric-led tertiary hospital or a free-standing midwifery-led primary maternity unit. This paper addresses a secondary aim of the study – to describe and explore the influences on women’s birthplace decision-making in New Zealand, which has a publicly funded, midwifery-led continuity of care maternity system. METHODS: This mixed method study utilised data from the six week postpartum survey and focus groups undertaken in the Christchurch area in New Zealand (2010–2012). Christchurch has a tertiary hospital and four primary maternity units. The survey was completed by 82% of the 702 study participants, who were well, pregnant women booked to give birth in one of these places. All women received midwifery-led continuity of care, regardless of their intended or actual birthplace. RESULTS: Almost all the respondents perceived themselves as the main birthplace decision-makers. Accessing a ‘specialist facility’ was the most important factor for the tertiary hospital group. The primary unit group identified several factors, including ‘closeness to home’, ‘ease of access’, the ‘atmosphere’ of the unit and avoidance of ‘unnecessary intervention’ as important. Both groups believed their chosen birthplace was the right and ‘safe’ place for them. The concept of ‘safety’ was integral and based on the participants’ differing perception of safety in childbirth. CONCLUSIONS: Birthplace is a profoundly important aspect of women’s experience of childbirth. This is the first published study reporting New Zealand women’s perspectives on their birthplace decision-making. The groups’ responses expressed different ideologies about childbirth. The tertiary hospital group identified with the ‘medical model’ of birth, and the primary unit group identified with the ‘midwifery model’ of birth. Research evidence affirming the ‘clinical safety’ of primary units addresses only one aspect of the beliefs influencing women’s birthplace decision-making. In order for more women to give birth at a primary unit other aspects of women’s beliefs need addressing, and much wider socio-political change is required
Complement system biomarkers in first episode psychosis
Several lines of evidence implicate immunological/inflammatory factors in development of schizophrenia. Complement is a key driver of inflammation, and complement dysregulation causes pathology in many diseases. Here we explored whether complement dysregulation occurred in first episode psychosis (FEP) and whether this provides a source of biomarkers. Eleven complement analytes (C1q, C3, C4, C5, factor B [FB], terminal complement complex [TCC], factor H [FH], FH-related proteins [FHR125], Properdin, C1 inhibitor [C1inh], soluble complement receptor 1 [CR1]) plus C-reactive protein (CRP) were measured in serum from 136 first episode psychosis (FEP) cases and 42 mentally healthy controls using established in-house or commercial ELISA. The relationship between caseness and variables (analytes measured, sex, age, ethnicity, tobacco/cannabis smoking) was tested by multivariate logistic regression. When measured individually, only TCC was significantly different between FEP and controls (p = 0.01). Stepwise selection demonstrated interdependence between some variables and revealed other variables that significantly and independently contributed to distinguishing cases and controls. The final model included demographics (sex, ethnicity, age, tobacco smoking) and a subset of analytes (C3, C4, C5, TCC, C1inh, FHR125, CR1). A receiver operating curve analysis combining these variables yielded an area under the curve of 0.79 for differentiating FEP from controls. This model was confirmed by multiple replications using randomly selected sample subsets. The data suggest that complement dysregulation occurs in FEP, supporting an underlying immune/inflammatory component to the disorder. Classification of FEP cases according to biological variables rather than symptoms would help stratify cases to identify those that might most benefit from therapeutic modification of the inflammatory response
Compendium of current complement therapeutics
The complement system is well known for its role in innate immunity and in maintenance of tissue homeostasis, providing a first line of defence against infection and playing a key role in flagging apoptotic cells and debris for disposal. Unfortunately, complement also contributes to pathogenesis of many diseases, in some cases driving pathology, and in others amplifying or exacerbating the inflammatory and damaging impact of non-complement disease triggers. The driving role of complement in a single disease, paroxysmal nocturnal hemoglobinuria (PNH), provoked the development and eventual FDA (US Food and Drug Administration) approval of eculizumab (Soliris™), an anti-C5 antibody, for therapy. Although PNH is very rare, eculizumab provided clinical validation and demonstrated that inhibiting the complement system was not only well-tolerated, but also provided rapid therapy and saved lives. This clinical validation, together with advances in genetic analyses that demonstrated strong associations between complement and common diseases, drove new drug discovery programmes in both academic laboratories and large pharmaceutical companies. Numerous drugs have entered clinical development and several are in phase 3 trials; however, many have fallen by the wayside. Despite this high attrition rate, crucial lessons have been learnt and hurdles to development have become clear. These insights have driven development of next generation anti-complement drugs designed to avoid pitfalls and facilitate patient access. In this article, we do not set out to provide a text-heavy review of complement therapeutics but instead will simply highlight the targets, modalities and current status of the plethora of drugs approved or in clinical development. With such a fast-moving drug development landscape, such a compendium will inevitably become out-dated; however, we provide a snapshot of the current field and illustrate the increased choice that clinicians might enjoy in the future in selecting the best drug for their application, decisions based not only on efficacy but also cost, mechanistic target, modality and route of delivery
Characterising the original anti-C5 function-blocking antibody, BB5.1, for species specificity, mode of action and interactions with C5
The implication of complement in multiple diseases over the last twenty years has fuelled interest in developing anti‐complement drugs. To date, the focus has been on C5; blocking cleavage of C5 prevents formation of two pro‐inflammatory activities, C5a anaphylatoxin and membrane attack complex. The concept of C5 blockade to inhibit inflammation dates back thirty years to the description of BB5.1, an anti‐C5 blocking monoclonal antibody raised in C5‐deficient mice. This antibody proved an invaluable tool to demonstrate complement involvement in mouse disease models and catalysed enthusiasm for anti‐complement drug development, culminating in the anti‐human C5 monoclonal antibody ecuizumab, the most successful anti‐complement drug to date, already in the clinic for several rare diseases. Despite its key role in providing proof‐of‐concept for C5 blockade, the mechanism of BB5.1 inhibition remains poorly understood. Here we characterised BB5.1 cross‐species inhibition, C5 binding affinity and chain specificity. BB5.1 efficiently inhibited C5 in mouse serum but not in human or other rodent sera; it prevented C5 cleavage and C5a generation. BB5.1 bound the C5 α‐chain with high affinity and slow off‐rate. BB5.1 complementarity determining regions were obtained and docking algorithms used to predict the likely binding interface on mouse C5
- …
