42,270 research outputs found

    Integrable dispersionless KdV hierarchy with sources

    Full text link
    An integrable dispersionless KdV hierarchy with sources (dKdVHWS) is derived. Lax pair equations and bi-Hamiltonian formulation for dKdVHWS are formulated. Hodograph solution for the dispersionless KdV equation with sources (dKdVWS) is obtained via hodograph transformation. Furthermore, the dispersionless Gelfand-Dickey hierarchy with sources (dGDHWS) is presented.Comment: 15 pages, to be published in J. Phys. A: Math. Ge

    The generalized Kupershmidt deformation for constructing new integrable systems from integrable bi-Hamiltonian systems

    Full text link
    Based on the Kupershmidt deformation for any integrable bi-Hamiltonian systems presented in [4], we propose the generalized Kupershmidt deformation to construct new systems from integrable bi-Hamiltonian systems, which provides a nonholonomic perturbation of the bi-Hamiltonian systems. The generalized Kupershmidt deformation is conjectured to preserve integrability. The conjecture is verified in a few representative cases: KdV equation, Boussinesq equation, Jaulent-Miodek equation and Camassa-Holm equation. For these specific cases, we present a general procedure to convert the generalized Kupershmidt deformation into the integrable Rosochatius deformation of soliton equation with self-consistent sources, then to transform it into a tt-type bi-Hamiltonian system. By using this generalized Kupershmidt deformation some new integrable systems are derived. In fact, this generalized Kupershmidt deformation also provides a new method to construct the integrable Rosochatius deformation of soliton equation with self-consistent sources.Comment: 21 pages, to appear in Journal of Mathematical Physic

    Separation of variables for soliton equations via their binary constrained flows

    Full text link
    Binary constrained flows of soliton equations admitting 2×22\times 2 Lax matrices have 2N degrees of freedom, which is twice as many as degrees of freedom in the case of mono-constrained flows. For their separation of variables only N pairs of canonical separated variables can be introduced via their Lax matrices by using the normal method. A new method to introduce the other N pairs of canonical separated variables and additional separated equations is proposed. The Jacobi inversion problems for binary constrained flows are established. Finally, the factorization of soliton equations by two commuting binary constrained flows and the separability of binary constrained flows enable us to construct the Jacobi inversion problems for some soliton hierarchies.Comment: 39 pages, Amste

    Deriving N-soliton solutions via constrained flows

    Full text link
    The soliton equations can be factorized by two commuting x- and t-constrained flows. We propose a method to derive N-soliton solutions of soliton equations directly from the x- and t-constrained flows.Comment: 8 pages, AmsTex, no figures, to be published in Journal of Physics

    Constructing N-soliton solution for the mKdV equation through constrained flows

    Full text link
    Based on the factorization of soliton equations into two commuting integrable x- and t-constrained flows, we derive N-soliton solutions for mKdV equation via its x- and t-constrained flows. It shows that soliton solution for soliton equations can be constructed directly from the constrained flows.Comment: 10 pages, Latex, to be published in "J. Phys. A: Math. Gen.
    corecore