24 research outputs found

    Reducing Crowding by Weakening Inhibitory Lateral Interactions in the Periphery with Perceptual Learning

    Get PDF
    We investigated whether lateral masking in the near-periphery, due to inhibitory lateral interactions at an early level of central visual processing, could be weakened by perceptual learning and whether learning transferred to an untrained, higher-level lateral masking known as crowding. The trained task was contrast detection of a Gabor target presented in the near periphery (4°) in the presence of co-oriented and co-aligned high contrast Gabor flankers, which featured different target-to-flankers separations along the vertical axis that varied from 2λ to 8λ. We found both suppressive and facilitatory lateral interactions at target-to-flankers distances (2λ - 4λ and 8λ, respectively) that were larger than those found in the fovea. Training reduces suppression but does not increase facilitation. Most importantly, we found that learning reduces crowding and improves contrast sensitivity, but has no effect on visual acuity (VA). These results suggest a different pattern of connectivity in the periphery with respect to the fovea as well as a different modulation of this connectivity via perceptual learning that not only reduces low-level lateral masking but also reduces crowding. These results have important implications for the rehabilitation of low-vision patients who must use peripheral vision to perform tasks, such as reading and refined figure-ground segmentation, which normal sighted subjects perform in the fovea

    Finding complex patterns using template matching

    No full text

    Responses of human visual cortex to uniform surfaces

    No full text
    Surface perception is fundamental to human vision, yet most studies of visual cortex have focused on the processing of borders. We therefore investigated the responses of human visual cortex to parametric changes in the luminance of uniform surfaces by using functional MRI. Early visual areas V1 and V2/V3 showed strong and reliable increases in signal for both increments and decrements in surface luminance. Responses were significantly larger for decrements than for increments, which was fully accounted for by differences in retinal illumination arising from asymmetric pupil dynamics. Responses to both sustained and transient changes of illumination were transient. Signals in early visual cortex scaled linearly with the magnitude of change in retinal illumination, as did subjects' subjective ratings of the perceived brightness of the stimuli. Our findings show that early visual cortex responds strongly to surfaces and that perception of surface brightness is compatible with brain responses at the earliest cortical stages of processing

    Altered contextual modulation of primary visual cortex responses in schizophrenia

    No full text
    Schizophrenia is typically associated with higher-level cognitive symptoms, such as disorganized thoughts, delusions, and hallucinations. However, deficits in visual processing have been consistently reported with the illness. Here, we provide strong neurophysiological evidence for a marked perturbation at the earliest level of cortical visual processing in patients with paranoid schizophrenia. Using functional magnetic resonance imaging (fMRI) and adapting a well-established approach from electrophysiology, we found that orientation-specific contextual modulation of cortical responses in human primary visual cortex (V1)-a hallmark of early neural encoding of visual stimuli-is dramatically reduced in patients with schizophrenia. This indicates that contextual processing in schizophrenia is altered at the earliest stages of visual cortical processing and supports current theories that emphasize the role of abnormalities in perceptual synthesis (eg, false inference) in schizophrenia
    corecore