423,607 research outputs found

    Dual canonical bases for the quantum special linear group and invariant subalgebras

    Full text link
    A string basis is constructed for each subalgebra of invariants of the function algebra on the quantum special linear group. By analyzing the string basis for a particular subalgebra of invariants, we obtain a ``canonical basis'' for every finite dimensional irreducible Uq(sl(n))U_q({\mathfrak{sl}}(n))-module. It is also shown that the algebra of functions on any quantum homogeneous space is generated by quantum minors.Comment: 15 page

    Serre presentations of Lie superalgebras

    Full text link
    An analogue of Serre's theorem is established for finite dimensional simple Lie superalgebras, which describes presentations in terms of Chevalley generators and Serre type relations relative to all possible choices of Borel subalgebras. The proof of the theorem is conceptually transparent; it also provides an alternative approach to Serre's theorem for ordinary Lie algebras.Comment: 45 page

    Distributions of several infinite families of mesh patterns

    Get PDF
    Br\"and\'en and Claesson introduced mesh patterns to provide explicit expansions for certain permutation statistics as linear combinations of (classical) permutation patterns. The first systematic study of avoidance of mesh patterns was conducted by Hilmarsson et al., while the first systematic study of the distribution of mesh patterns was conducted by the first two authors. In this paper, we provide far-reaching generalizations for 8 known distribution results and 5 known avoidance results related to mesh patterns by giving distribution or avoidance formulas for certain infinite families of mesh patterns in terms of distribution or avoidance formulas for smaller patterns. Moreover, as a corollary to a general result, we find the distribution of one more mesh pattern of length 2.Comment: 27 page

    Quantum supergroups and topological invariants of three - manifolds

    Full text link
    The Reshetikhin - Turaeve approach to topological invariants of three - manifolds is generalized to quantum supergroups. A general method for constructing three - manifold invariants is developed, which requires only the study of the eigenvalues of certain central elements of the quantum supergroup in irreducible representations. To illustrate how the method works, Uq(gl(21))U_q(gl(2|1)) at odd roots of unity is studied in detail, and the corresponding topological invariants are obtained.Comment: 22 page

    Topological Invariants For Lens Spaces And Exceptional Quantum Groups

    Full text link
    The Reshetikhin - Turaev invariants arising from the quantum groups associated with the exceptional Lie algebras G2G_2, F4F_4 and E8E_8 at odd roots of unity are constructed and explicitly computed for all the lens spaces.Comment: LaTeX 10 page

    Gamma Ray Burst Prompt Emission Variability in Synchrotron and Synchrotron Self-Compton Lightcurves

    Full text link
    Gamma Ray Burst prompt emission is believed to originate from electrons accelerated in a highly relativistic outflow. "Internal shocks" due to collisions between shells ejected by the central engine is a leading candidate for electron acceleration. While synchrotron radiation is generally invoked to interpret prompt gamma-ray emission within the internal shock model, synchrotron self-Compton (SSC) is also considered as a possible candidate of radiation mechanism. In this case, one would expect a synchrotron emission component at low energies, and the naked-eye GRB 080319B has been considered as such an example. In the view that the gamma-ray lightcurve of GRB 080319B is much more variable than its optical counterpart, in this paper we study the relative variability between the synchrotron and SSC components. We develop a "top-down" formalism by using observed quantities to infer physical parameters, and subsequently to study the temporal structure of synchrotron and SSC components of a GRB. We complement the formalism with a "bottom-up" approach where the synchrotron and SSC lightcurves are calculated through a Monte-Carlo simulations of the internal shock model. Both approaches lead to the same conclusion. Small variations in the synchrotron lightcurve can be only moderately amplified in the SSC lightcurve. The SSC model therefore cannot adequately interpret the gamma-ray emission properties of GRB 080319B.Comment: 13 pages, 4 figures, accepted for publication in MNRA
    corecore