157,539 research outputs found

    Giant Microwave Absorption in Metallic Grains: Relaxation Mechanism

    Full text link
    We show that the low frequency microwave absorption of an ensemble of small metallic grains at low temperatures is dominated by a mesoscopic relaxation mechanism. Giant positive magnetoresistance and very strong temperature dependence of the microwave conductivity is predicted.Comment: 4 pages, REVTeX3+mutlticol+epsf, one EPS figur

    Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched cascaded interactions

    Get PDF
    Cascaded nonlinearities have attracted much interest, but ultrafast applications have been seriously hampered by the simultaneous requirements of being near phase-matching and having ultrafast femtosecond response times. Here we show that in strongly phase-mismatched nonlinear frequency conversion crystals the pump pulse can experience a large and extremely broadband self-defocusing cascaded Kerr-like nonlinearity. The large cascaded nonlinearity is ensured through interaction with the largest quadratic tensor element in the crystal, and the strong phase-mismatch ensures an ultrafast nonlinear response with an octave-spanning bandwidth. We verify this experimentally by showing few-cycle soliton compression with noncritical cascaded second-harmonic generation: Energetic 47 fs infrared pulses are compressed in a just 1-mm long bulk lithium niobate crystal to 17 fs (under 4 optical cycles) with 80% efficiency, and upon further propagation an octave-spanning supercontinuum is observed. Such ultrafast cascading is expected to occur for a broad range of pump wavelengths spanning the near- and mid-IR using standard nonlinear crystals.Comment: resubmitted, revised version, accepted for Phys. Rev. Let

    Multifractal detrended cross-correlation analysis for two nonstationary signals

    Full text link
    It is ubiquitous in natural and social sciences that two variables, recorded temporally or spatially in a complex system, are cross-correlated and possess multifractal features. We propose a new method called multifractal detrended cross-correlation analysis (MF-DXA) to investigate the multifractal behaviors in the power-law cross-correlations between two records in one or higher dimensions. The method is validated with cross-correlated 1D and 2D binomial measures and multifractal random walks. Application to two financial time series is also illustrated.Comment: 4 RevTex pages including 6 eps figure

    Non-linear Plasma Wake Growth of Electron Holes

    Full text link
    An object's wake in a plasma with small Debye length that drifts \emph{across} the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind wake and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations
    corecore