390 research outputs found
The GlueX Central Drift Chamber: Design and Performance
Tests and studies concerning the design and performance of the GlueX Central
Drift
Chamber (CDC) are presented. A full-scale prototype was built to test and
steer the mechanical and electronic design. Small scale prototypes were
constructed to test for sagging and to do timing and resolution studies of the
detector. These studies were used to choose the gas mixture and to program a
Monte Carlo simulation that can predict the detector response in an external
magnetic field. Particle identification and charge division possibilities were
also investigated.Comment: 16 pages, 29 figure
Anisotropic Etching of Graphite and Graphene in a Remote Hydrogen Plasma
We investigate the etching of a pure hydrogen plasma on graphite samples and
graphene flakes on SiO and hexagonal Boron-Nitride (hBN) substrates. The
pressure and distance dependence of the graphite exposure experiments reveals
the existence of two distinct plasma regimes: the direct and the remote plasma
regime. Graphite surfaces exposed directly to the hydrogen plasma exhibit
numerous etch pits of various size and depth, indicating continuous defect
creation throughout the etching process. In contrast, anisotropic etching
forming regular and symmetric hexagons starting only from preexisting defects
and edges is seen in the remote plasma regime, where the sample is located
downstream, outside of the glowing plasma. This regime is possible in a narrow
window of parameters where essentially all ions have already recombined, yet a
flux of H-radicals performing anisotropic etching is still present. At the
required process pressures, the radicals can recombine only on surfaces, not in
the gas itself. Thus, the tube material needs to exhibit a sufficiently low H
radical recombination coefficient, such a found for quartz or pyrex. In the
remote regime, we investigate the etching of single layer and bilayer graphene
on SiO and hBN substrates. We find isotropic etching for single layer
graphene on SiO, whereas we observe highly anisotropic etching for graphene
on a hBN substrate. For bilayer graphene, anisotropic etching is observed on
both substrates. Finally, we demonstrate the use of artificial defects to
create well defined graphene nanostructures with clean crystallographic edges.Comment: 7 pages, 4 color figure
A high-precision polarimeter
We have built a polarimeter in order to measure the electron beam
polarization in hall C at JLAB. Using a superconducting solenoid to drive the
pure-iron target foil into saturation, and a symmetrical setup to detect the
Moller electrons in coincidence, we achieve an accuracy of <1%. This sets a new
standard for Moller polarimeters.Comment: 17 pages, 9 figures, submitted to N.I.
Inclusive Electron-Nucleus Scattering at Large Momentum Transfer
Inclusive electron scattering is measured with 4.045 GeV incident beam energy
from C, Fe and Au targets. The measured energy transfers and angles correspond
to a kinematic range for Bjorken and momentum transfers from . When analyzed in terms of the y-scaling function the data show
for the first time an approach to scaling for values of the initial nucleon
momenta significantly greater than the nuclear matter Fermi-momentum (i.e. GeV/c).Comment: 5 pages TEX, 5 Postscript figures also available at
http://www.krl.caltech.edu/preprints/OAP.htm
Correlated Strength in Nuclear Spectral Function
We have carried out an (e,e'p) experiment at high momentum transfer and in
parallel kinematics to measure the strength of the nuclear spectral function
S(k,E) at high nucleon momenta k and large removal energies E. This strength is
related to the presence of short-range and tensor correlations, and was known
hitherto only indirectly and with considerable uncertainty from the lack of
strength in the independent-particle region. This experiment confirms by direct
measurement the correlated strength predicted by theory.Comment: 4 pages, 2 figures, accepted by Phys. Rev. Let
Measurements of electron-proton elastic cross sections for
We report on precision measurements of the elastic cross section for
electron-proton scattering performed in Hall C at Jefferson Lab. The
measurements were made at 28 unique kinematic settings covering a range in
momentum transfer of 0.4 5.5 . These measurements
represent a significant contribution to the world's cross section data set in
the range where a large discrepancy currently exists between the ratio of
electric to magnetic proton form factors extracted from previous cross section
measurements and that recently measured via polarization transfer in Hall A at
Jefferson Lab.Comment: 17 pages, 18 figures; text added, some figures replace
x- and xi-scaling of the Nuclear Structure Function at Large x
Inclusive electron scattering data are presented for ^2H and Fe targets at an
incident electron energy of 4.045 GeV for a range of momentum transfers from
Q^2 = 1 to 7 (GeV/c)^2. Data were taken at Jefferson Laboratory for low values
of energy loss, corresponding to values of Bjorken x greater than or near 1.
The structure functions do not show scaling in x in this range, where inelastic
scattering is not expected to dominate the cross section. The data do show
scaling, however, in the Nachtmann variable \xi. This scaling may be the result
of Bloom Gilman duality in the nucleon structure function combined with the
Fermi motion of the nucleons in the nucleus. The resulting extension of scaling
to larger values of \xi opens up the possibility of accessing nuclear structure
functions in the high-x region at lower values of Q^2 than previously believed.Comment: RevTeX, 5 pages with 4 postscript figures, submitted to PR
First measurements of the ^16O(e,e'pn)^14N reaction
This paper reports on the first measurement of the ^16O(e,e'pn)^14N reaction.
Data were measured in kinematics centred on a super-parallel geometry at energy
and momentum transfers of 215 MeV and 316 MeV/c. The experimental resolution
was sufficient to distinguish groups of states in the residual nucleus but not
good enough to separate individual states. The data show a strong dependence on
missing momentum and this dependence appears to be different for two groups of
states in the residual nucleus. Theoretical calculations of the reaction using
the Pavia code do not reproduce the shape or the magnitude of the data.Comment: 10 pages, 11 figures, 2 tables, Accepted for publication in EPJ
Charged pion form factor between Q^2=0.60 and 2.45 GeV^2. II. Determination of, and results for, the pion form factor
The charged pion form factor, Fpi(Q^2), is an important quantity which can be
used to advance our knowledge of hadronic structure. However, the extraction of
Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is
inherently model dependent. Therefore, a detailed description of the extraction
of the charged pion form factor from electroproduction data obtained recently
at Jefferson Lab is presented, with particular focus given to the dominant
uncertainties in this procedure. Results for Fpi are presented for
Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically
below the monopole parameterization that describes the low Q^2 data used to
determine the pion charge radius. The pion form factor can be calculated in a
wide variety of theoretical approaches, and the experimental results are
compared to a number of calculations. This comparison is helpful in
understanding the role of soft versus hard contributions to hadronic structure
in the intermediate Q^2 regime.Comment: 18 pages, 11 figure
- …
