2,846 research outputs found
Program to enhance tae transfer of new technology to potential industrial, governmental, and academic users in the oklahoma area Quarterly status report, 1 Jul. - 30 Sep. 1967
Aerospace technology applications to industr
Construction of a profile of the existing economic structure of the region surrounding the Southeastern State College. Program to enhance the transfer of new technology to potential industrial, governmental Quarterly status report, 1 Jan. - 31 Mar.
Technology utilization program for use in regional economic profil
The runaway instability in general relativistic accretion disks
When an accretion disk falls prey to the runaway instability, a large portion
of its mass is devoured by the black hole within a few dynamical times. Despite
decades of effort, it is still unclear under what conditions such an
instability can occur. The technically most advanced relativistic simulations
to date were unable to find a clear sign for the onset of the instability. In
this work, we present three-dimensional relativistic hydrodynamics simulations
of accretion disks around black holes in dynamical space-time. We focus on the
configurations that are expected to be particularly prone to the development of
this instability. We demonstrate, for the first time, that the fully
self-consistent general relativistic evolution does indeed produce a runaway
instability.Comment: 5 pages, 3 figures, minor corrections to match published version in
MNRAS, +link to animatio
Are gravitational waves from giant magnetar flares observable?
Are giant flares in magnetars viable sources of gravitational radiation? Few
theoretical studies have been concerned with this problem, with the small
number using either highly idealized models or assuming a magnetic field orders
of magnitude beyond what is supported by observations. We perform nonlinear
general-relativistic magnetohydrodynamics simulations of large-scale
hydromagnetic instabilities in magnetar models. We utilise these models to find
gravitational wave emissions over a wide range of energies, from 10^40 to 10^47
erg. This allows us to derive a systematic relationship between the surface
field strength and the gravitational wave strain, which we find to be highly
nonlinear. In particular, for typical magnetar fields of a few times 10^15 G,
we conclude that a direct observation of f-modes excited by global magnetic
field reconfigurations is unlikely with present or near-future gravitational
wave observatories, though we also discuss the possibility that modes in a
low-frequency band up to 100 Hz could be sufficiently excited to be relevant
for observation.Comment: 4 pages, 3 figures. Further information can be found at
http://www.physik.uni-tuebingen.de/institute/astronomie-astrophysik/institut/theoretische-astrophysik/forschung.htm
Time-division SQUID multiplexers with reduced sensitivity to external magnetic fields
Time-division SQUID multiplexers are used in many applications that require
exquisite control of systematic error. One potential source of systematic error
is the pickup of external magnetic fields in the multiplexer. We present
measurements of the field sensitivity figure of merit, effective area, for both
the first stage and second stage SQUID amplifiers in three NIST SQUID
multiplexer designs. These designs include a new variety with improved
gradiometry that significantly reduces the effective area of both the first and
second stage SQUID amplifiers.Comment: 4 pages, 7 figures. Submitted for publication in the IEEE
Transactions on Applied Superconductivity, August 201
Cadaveric Renal transplantation with Cyclosporine: Experiences in 148 patients at a single institution.
Numerical ragweed pollen forecasts using different source maps: a comparison for France.
One of the key input parameters for numerical pollen forecasts is the distribution of pollen sources. Generally, three different methodologies exist to assemble such distribution maps: (1) plant inventories, (2) land use data in combination with annual pollen counts, and (3) ecological modeling. We have used six exemplary maps for all of these methodologies to study their applicability and usefulness in numerical pollen forecasts. The ragweed pollen season of 2012 in France has been simulated with the numerical weather prediction model COSMO-ART using each of the distribution maps in turn. The simulated pollen concentrations were statistically compared to measured values to derive a ranking of the maps with respect to their performance. Overall, approach (2) resulted in the best correspondence between observed and simulated pollen concentrations for the year 2012. It is shown that maps resulting from ecological modeling that does not include a sophisticated estimation of the plant density have a very low predictive skill. For inventory maps and the maps based on land use data and pollen counts, the results depend very much on the observational site. The use of pollen counts to calibrate the map enhances the performance of the model considerably
- …
