387 research outputs found
Spotting Trees with Few Leaves
We show two results related to the Hamiltonicity and -Path algorithms in
undirected graphs by Bj\"orklund [FOCS'10], and Bj\"orklund et al., [arXiv'10].
First, we demonstrate that the technique used can be generalized to finding
some -vertex tree with leaves in an -vertex undirected graph in
time. It can be applied as a subroutine to solve the
-Internal Spanning Tree (-IST) problem in
time using polynomial space, improving upon previous algorithms for this
problem. In particular, for the first time we break the natural barrier of
. Second, we show that the iterated random bipartition employed by
the algorithm can be improved whenever the host graph admits a vertex coloring
with few colors; it can be an ordinary proper vertex coloring, a fractional
vertex coloring, or a vector coloring. In effect, we show improved bounds for
-Path and Hamiltonicity in any graph of maximum degree
or with vector chromatic number at most 8
End-to-end verifiable elections in the standard model
We present the cryptographic implementation of “DEMOS”, a new e-voting system that is end-to-end verifiable in the standard model, i.e., without any additional “setup” assumption or access to a random oracle (RO). Previously known end-to-end verifiable e-voting systems required such additional assumptions (specifically, either the existence of a “randomness beacon” or were only shown secure in the RO model). In order to analyze our scheme, we also provide a modeling of end-to-end verifiability as well as privacy and receipt-freeness that encompasses previous definitions in the form of two concise attack games. Our scheme satisfies end-to-end verifiability information theoretically in the standard model and privacy/receipt-freeness under a computational assumption (subexponential Decisional Diffie Helman). In our construction, we utilize a number of techniques used for the first time in the context of e-voting schemes that include utilizing randomness from bit-fixing sources, zero-knowledge proofs with imperfect verifier randomness and complexity leveraging
Systematic review of dexketoprofen in acute and chronic pain
Background: Dexketoprofen, and NSAID used in the management of acute and chronic pains, is licensed in several countries but has not previously been the subject of a systematic review. We used published and unpublished information from randomised clinical trials (RCTs) of dexketoprofen in painful conditions to assess evidence on efficacy and harm. Methods: PubMed and Cochrane Central were searched for RCTs of dexketoprofen for pain of any aetiology. Reference lists of retrieved articles and reviews were also searched. Menarini Group produced copies of published and unpublished studies (clinical trial reports). Data were abstracted into a standard form. For studies reporting results of single does administration, the number of patients with at least 50% pain relief was derived and used to calculate the relative benefit (RB) and number-needed-to-treat (NNT) for one patient to achieve at least 50% pain relief compared with placebo. Results: Thirty-five trials were found in acute pain and chronic pain; 6,380 patients were included, 3, 381 receiving dexketoprofen. Information from 16 trials (almost half the total patients) was obtained from clinical trial reports from previously unpublished trials or abstracts. Almost all of the trials were of short duration in acute conditions or recent onset pain. All 12 randomised trials that compared dexketoprofen (any dose) with placebo found dexketoprofen to be statistically superior. Five trials in postoperative pain yielded NNTs for 12.5 mg dexketoprofen of 3.5 (2.7 to 4.9), 25 mg dexketoprofen of 3.0 (2.4 to 3.9), and 50 mg dexketoprofen of 2.1 (1.5 to 3.5). In 29/30 active comparator trials, dexketoprofen at the dose used was at least equivalent in efficacy to comparator drugs. Adverse event withdrawal rates were low in postoperative pain and somewhat higher in trials of longer duration; no serious adverse events were reported. Conclusion: Dexketoprofen was at least as effective as other NSAIDs and paracetamol/opioid combinations. While adverse event withdrawal was not different between dexketoprofen and comparator analgesics, the different conditions and comparators studies precluded any formal analysis. Exposure was limited, and no conclusions could be drawn about safety in terms of serious adverse events like gastrointestinal bleeding or cardiovascular events
Determination of nutrient salts by automatic methods both in seawater and brackish water: the phosphate blank
9 páginas, 2 tablas, 2 figurasThe main inconvenience in determining nutrients in seawater by automatic methods is simply solved:
the preparation of a suitable blank which corrects the effect of the refractive index change on the recorded
signal. Two procedures are proposed, one physical (a simple equation to estimate the effect) and the other
chemical (removal of the dissolved phosphorus with ferric hydroxide).Support for this work came from CICYT (MAR88-0245 project) and
Conselleria de Pesca de la Xunta de GaliciaPeer reviewe
Cloning and characterization of mouse UBPy, a deubiquitinating enzyme that interacts with the Ras guanine nucleotide exchange factor CDC25(Mm)/Ras-GRF1
We used yeast "two-hybrid" screening to isolate cDNA-encoding proteins interacting with the N-terminal domain of the Ras nucleotide exchange factor CDC25(Mm). Three independent overlapping clones were isolated from a mouse embryo cDNA library. The full-length cDNA was cloned by RACE-polymerase chain reaction. It encodes a large protein (1080 amino acids) highly homologous to the human deubiquitinating enzyme hUBPy and contains a well conserved domain typical of ubiquitin isopeptidases. Therefore we called this new protein mouse UBPy (mUBPy). Northern blot analysis revealed a 4-kilobase mRNA present in several mouse tissues and highly expressed in testis; a good level of expression was also found in brain, where CDC25(Mm) is exclusively expressed. Using a glutathione S-transferase fusion protein, we demonstrated an "in vitro" interaction between mUBPy and the N-terminal half (amino acids 1-625) of CDC25(Mm). In addition "in vivo" interaction was demonstrated after cotransfection in mammalian cells. We also showed that CDC25Mm, expressed in HEK293 cells, is ubiquitinated and that the coexpression of mUBPy decreases its ubiquitination. In addition the half-life of CDC25Mm protein was considerably increased in the presence of mUBPy. The specific function of the human homolog hUBPy is not defined, although its expression was correlated with cell proliferation. Our results suggest that mUBPy may play a role in controlling degradation of CDC25(Mm), thus regulating the level of this Ras-guanine nucleotide exchange factor
Minimising Communication in Honest-Majority MPC by Batchwise Multiplication Verification
In this paper, we present two new and very communication-efficient protocols for maliciously secure multi-party computation over fields in the honest-majority setting with abort. Our first protocol improves a recent protocol by Lindell and Nof. Using the so far overlooked tool of batchwise multiplication verification, we speed up their technique for checking correctness of multiplications (with some other improvements), reducing communication by 2x to 7x. In particular, in the 3PC setting, each party sends only two field elements per multiplication. We also show how to achieve fairness, which Lindell and Nof left as an open problem. Our second protocol again applies batchwise multiplication verification, this time to perform 3PC by letting two parties perform the SPDZ protocol using triples generated by a third party and verified batchwise. In this protocol, each party sends only 4/3 field elements during the online phase and 5/3 field elements during the preprocessing phase
Proving formally the implementation of an efficient gcd algorithm for polynomials
Last version published in the proceedings of IJCAR 06, part of FLOC 06.International audienceWe describe here a formal proof in the Coq system of the structure theorem for subresultants, which allows to prove formally the correction of our implementation of the subresultant algorithm. Up to our knowledge, it is the first mechanized proof of this result
Exploiting indigenous knowledge of subsistence farmers’ for the management and conservation of Enset (Ensete ventricosum (Welw.) Cheesman) (musaceae family) diversity on-farm
Exploring Crypto Dark Matter: New Simple PRF Candidates and Their Applications
Pseudorandom functions (PRFs) are one of the fundamental building blocks in cryptography. We explore a new space of plausible PRF candidates that are obtained by mixing linear functions over different small moduli. Our candidates are motivated by the goals of maximizing simplicity and minimizing complexity measures that are relevant to cryptographic applications such as secure multiparty computation.
We present several concrete new PRF candidates that follow the above approach. Our main candidate is a weak PRF candidate (whose conjectured pseudorandomness only holds for uniformly random inputs) that first applies a secret mod-2 linear mapping to the input, and then a public mod-3 linear mapping to the result. This candidate can be implemented by depth-2 circuits. We also put forward a similar depth-3 strong PRF candidate. Finally, we present a different weak PRF candidate that can be viewed as a deterministic variant of ``Learning Parity with Noise\u27\u27 (LPN) where the noise is obtained via a mod-3 inner product of the input and the key.
The advantage of our approach is twofold. On the theoretical side, the simplicity of our candidates enables us to draw natural connections between their hardness and questions in complexity theory or learning theory (e.g., learnability of depth-2 circuits and width-3 branching programs, interpolation and property testing for sparse polynomials, and natural proof barriers for showing super-linear circuit lower bounds). On the applied side, the ``piecewise-linear\u27\u27 structure of our candidates lends itself nicely to applications in secure multiparty computation (MPC). Using our PRF candidates, we construct protocols for distributed PRF evaluation that achieve better round complexity and/or communication complexity (often both) compared to protocols obtained by combining standard MPC protocols with PRFs like AES, LowMC, or Rasta (the latter two are specialized MPC-friendly PRFs). Our advantage over competing approaches is maximized in the setting of MPC with an honest majority, or alternatively, MPC with preprocessing.
Finally, we introduce a new primitive we call an encoded-input PRF, which can be viewed as an interpolation between weak PRFs and standard (strong) PRFs. As we demonstrate, an encoded-input PRF can often be used as a drop-in replacement for a strong PRF, combining the efficiency benefits of weak PRFs and the security benefits of strong PRFs. We conclude by showing that our main weak PRF candidate can plausibly be boosted to an encoded-input PRF by leveraging error-correcting codes
- …
