5,846 research outputs found

    LBM, a useful tool for mesoscale modelling of single phase and multiphase flow – the variety of applications and approaches at Nottingham

    Get PDF
    This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.Giving an overview of Nottingham group’s recent progress on numerical modelling and approaches in developing and applying the lattice Boltzmann method (LBM), the paper tries to demonstrate that the LBM is a useful tool for mesoscale modelling of single phase and multiphase flow. The variety of applications of the LBM modelling is reported, which include single phase fluid flow and heat transfer around or across rotational cylinder of curved boundary, two-phase flow in mixing layer, electroosmotically driven flow in thin liquid layer, bubbles/drops flow and coalescence in conventional channels and in microchannels with confined boundary, liquid droplets in gas with relative large density ratio; viscous fingering phenomena of immiscible fluids displacement, and flow in porous media

    Representation Class and Geometrical Invariants of Quantum States under Local Unitary Transformations

    Full text link
    We investigate the equivalence of bipartite quantum mixed states under local unitary transformations by introducing representation classes from a geometrical approach. It is shown that two bipartite mixed states are equivalent under local unitary transformations if and only if they have the same representation class. Detailed examples are given on calculating representation classes.Comment: 11 page

    Cultivo intercalar de milho seguido de caupi num plantio de dendê.

    Get PDF
    bitstream/item/40157/1/Circ-Tec-47-CPATU.pd

    Hawking radiation of Dirac particles via tunneling from Kerr black hole

    Full text link
    We investigated Dirac Particles' Hawking radiation from event horizon of Kerr black hole in terms of the tunneling formalism. Applying WKB approximation to the general covariant Dirac equation in Kerr spacetime background, we obtain the tunneling probability for fermions and Hawking temperature of Kerr black hole. The result obtained by taking the fermion tunneling into account is consistent with the previous literatures.Comment: 7 pages, no figures, to appear in CQ

    Measure representation and multifractal analysis of complete genomes

    Get PDF
    This paper introduces the notion of measure representation of DNA sequences. Spectral analysis and multifractal analysis are then performed on the measure representations of a large number of complete genomes. The main aim of this paper is to discuss the multifractal property of the measure representation and the classification of bacteria. From the measure representations and the values of the DqD_{q} spectra and related CqC_{q} curves, it is concluded that these complete genomes are not random sequences. In fact, spectral analyses performed indicate that these measure representations considered as time series, exhibit strong long-range correlation. For substrings with length K=8, the DqD_{q} spectra of all organisms studied are multifractal-like and sufficiently smooth for the CqC_{q} curves to be meaningful. The CqC_{q} curves of all bacteria resemble a classical phase transition at a critical point. But the 'analogous' phase transitions of chromosomes of non-bacteria organisms are different. Apart from Chromosome 1 of {\it C. elegans}, they exhibit the shape of double-peaked specific heat function.Comment: 12 pages with 9 figures and 1 tabl

    Imaging stress and magnetism at high pressures using a nanoscale quantum sensor

    Get PDF
    Pressure alters the physical, chemical and electronic properties of matter. The development of the diamond anvil cell (DAC) enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena ranging from the properties of planetary interiors to transitions between quantum mechanical phases. In this work, we introduce and utilize a novel nanoscale sensing platform, which integrates nitrogen-vacancy (NV) color centers directly into the culet (tip) of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging (~600 nm) of both stress fields and magnetism, up to pressures ~30 GPa and for temperatures ranging from 25-340 K. For the former, we quantify all six (normal and shear) stress components with accuracy <0.01<0.01 GPa, offering unique new capabilities for characterizing the strength and effective viscosity of solids and fluids under pressure. For the latter, we demonstrate vector magnetic field imaging with dipole accuracy <1011<10^{-11} emu, enabling us to measure the pressure-driven αϵ\alpha\leftrightarrow\epsilon phase transition in iron as well as the complex pressure-temperature phase diagram of gadolinium. In addition to DC vector magnetometry, we highlight a complementary NV-sensing modality using T1 noise spectroscopy; crucially, this demonstrates our ability to characterize phase transitions even in the absence of static magnetic signatures. By integrating an atomic-scale sensor directly into DACs, our platform enables the in situ imaging of elastic, electric and magnetic phenomena at high pressures.Comment: 18 + 50 pages, 4 + 19 figure

    Detection of the European epidemic strain of Trichomonas gallinae in finches, but not other non-columbiformes, in the absence of macroscopic disease

    Get PDF
    Finch trichomonosis is an emerging infectious disease affecting European passerines caused by a clonal strain of Trichomonas gallinae. Migrating chaffinches (Fringilla coelebs) were proposed as the likely vector of parasite spread from Great Britain to Fennoscandia. To test for such parasite carriage, we screened samples of oesophagus/crop from 275 Apodiform, Passeriform and Piciform birds (40 species) which had no macroscopic evidence of trichomonosis (i.e. necrotic ingluvitis). These birds were found dead following the emergence of trichomonosis in Great Britain, 2009-2012, and were examined post-mortem. Polymerase chain reactions were used to detect (ITS1/5.8S rRNA/ITS2 region and single subunit rRNA gene) and to subtype (Fe-hydrogenase gene) T. gallinae. Trichomonas gallinae was detected in six finches (three chaffinches, two greenfinches (Chloris chloris) and a bullfinch (Pyrrhula pyrrhula)). Sequence data had 100% identity to the European finch epidemic A1 strain for each species. While these results are consistent with finches being vectors of T. gallinae, alternative explanations include the presence of incubating or resolved T. gallinae infections. The inclusion of histopathological examination would help elucidate the significance of T. gallinae infection in the absence of macroscopic lesions

    Stellar Velocity Dispersion Measurements in High-Luminosity Quasar Hosts and Implications for the AGN Black Hole Mass Scale

    Full text link
    We present new stellar velocity dispersion measurements for four luminous quasars with the NIFS instrument and the ALTAIR laser guide star adaptive optics system on the Gemini North 8-m telescope. Stellar velocity dispersion measurements and measurements of the supermassive black hole masses in luminous quasars are necessary to investigate the coevolution of black holes and galaxies, trace the details of accretion, and probe the nature of feedback. We find that higher-luminosity quasars with higher-mass black holes are not offset with respect to the MBH-sigma relation exhibited by lower-luminosity AGNs with lower-mass black holes, nor do we see correlations with galaxy morphology. As part of this analysis, we have recalculated the virial products for the entire sample of reverberation-mapped AGNs and used these data to redetermine the mean virial factor hfi that places the reverberation data on the quiescent M_BH-sigma relation. With our updated measurements and new additions to the AGN sample, we obtain = 4.31 +/- 1.05, which is slightly lower than, but consistent with, most previous determinations.Comment: Accepted for publication in ApJ. For a brief video highlighting the results of this paper, see: http://www.youtube.com/watch?v=Mxx80aOVw1

    Dirac-Surface-State-Dominated Spin to Charge Current Conversion in the Topological Insulator (Bi0.22Sb0.78)2Te3(Bi_{0.22}Sb_{0.78})_2Te_3 Films at Room Temperature

    Full text link
    We report the spin to charge current conversation in an intrinsic topological insulator (TI) (Bi0.22Sb0.78)2Te3(Bi_{0.22}Sb_{0.78})_2Te_3 film at room temperature. The spin currents are generated in a thin layer of permalloy (Py) by two different processes, spin pumping (SPE) and spin Seebeck effects (SSE). In the first we use microwave-driven ferromagnetic resonance of the Py film to generate a SPE spin current that is injected into the TI (Bi0.22Sb0.78)2Te3(Bi_{0.22}Sb_{0.78})_2Te_3 layer in direct contact with Py. In the second we use the SSE in the longitudinal configuration in Py without contamination by the Nernst effect made possible with a thin NiO layer between the Py and (Bi0.22Sb0.78)2Te3(Bi_{0.22}Sb_{0.78})_2Te_3 layers. The spin-to-charge current conversion is attributed to the inverse Edelstein effect (IEE) made possible by the spin-momentum locking in the electron Fermi contours due to the Rashba field. The measurements by the two techniques yield very similar values for the IEE parameter, which are larger than the reported values in the previous studies on topological insulators.Comment: 18 pages and 7 figure
    corecore