925 research outputs found

    On the existence of Killing vector fields

    Get PDF
    In covariant metric theories of coupled gravity-matter systems the necessary and sufficient conditions ensuring the existence of a Killing vector field are investigated. It is shown that the symmetries of initial data sets are preserved by the evolution of hyperbolic systems.Comment: 9 pages, no figure, to appear in Class. Quant. Gra

    Uniqueness Theorem for Static Black Hole Solutions of sigma-models in Higher Dimensions

    Full text link
    We prove the uniqueness theorem for self-gravitating non-linear sigma-models in higher dimensional spacetime. Applying the positive mass theorem we show that Schwarzschild-Tagherlini spacetime is the only maximally extended, static asymptotically flat solution with non-rotating regular event horizon with a constant mapping.Comment: 5 peges, Revtex, to be published in Class.Quantum Gra

    A spacetime characterization of the Kerr metric

    Full text link
    We obtain a characterization of the Kerr metric among stationary, asymptotically flat, vacuum spacetimes, which extends the characterization in terms of the Simon tensor (defined only in the manifold of trajectories) to the whole spacetime. More precisely, we define a three index tensor on any spacetime with a Killing field, which vanishes identically for Kerr and which coincides in the strictly stationary region with the Simon tensor when projected down into the manifold of trajectories. We prove that a stationary asymptotically flat vacuum spacetime with vanishing spacetime Simon tensor is locally isometric to Kerr. A geometrical interpretation of this characterization in terms of the Weyl tensor is also given. Namely, a stationary, asymptotically flat vacuum spacetime such that each principal null direction of the Killing form is a repeated principal null direction of the Weyl tensor is locally isometric to Kerr.Comment: 23 pages, No figures, LaTeX, to appear in Classical and Quantum Gravit

    Extrema of Mass, First Law of Black Hole Mechanics and Staticity Theorem in Einstein-Maxwell-axion-dilaton Gravity

    Get PDF
    Using the ADM formulation of the Einstein-Maxwell axion-dilaton gravity we derived the formulas for the variation of mass and other asymptotic conserved quantities in the theory under consideration. Generalizing this kind of reasoning to the initial dota for the manifold with an interior boundary we got the generalized first law of black hole mechanics. We consider an asymptotically flat solution to the Einstein-Maxwell axion-dilaton gravity describing a black hole with a Killing vector field timelike at infinity, the horizon of which comprises a bifurcate Killing horizon with a bifurcate surface. Supposing that the Killing vector field is asymptotically orthogonal to the static hypersurface with boundary S and compact interior, we find that the solution is static in the exterior world, when the timelike vector field is normal to the horizon and has vanishing electric and axion- electric fields on static slices.Comment: 17 pages, Revtex, a few comments (introduction) and references adde

    The Ernst equation and ergosurfaces

    Full text link
    We show that analytic solutions \mcE of the Ernst equation with non-empty zero-level-set of \Re \mcE lead to smooth ergosurfaces in space-time. In fact, the space-time metric is smooth near a "Ernst ergosurface" EfE_f if and only if \mcE is smooth near EfE_f and does not have zeros of infinite order there.Comment: 23 pages, 4 figures; misprints correcte

    THE UNIQUENESS THEOREM FOR ROTATING BLACK HOLE SOLUTIONS OF SELF-GRAVITATING HARMONIC MAPPINGS

    Get PDF
    We consider rotating black hole configurations of self-gravitating maps from spacetime into arbitrary Riemannian manifolds. We first establish the integrability conditions for the Killing fields generating the stationary and the axisymmetric isometry (circularity theorem). Restricting ourselves to mappings with harmonic action, we subsequently prove that the only stationary and axisymmetric, asymptotically flat black hole solution with regular event horizon is the Kerr metric. Together with the uniqueness result for non-rotating configurations and the strong rigidity theorem, this establishes the uniqueness of the Kerr family amongst all stationary black hole solutions of self-gravitating harmonic mappings.Comment: 18 pages, latex, no figure

    Physically Realistic Solutions to the Ernst Equation on Hyperelliptic Riemann Surfaces

    Full text link
    We show that the class of hyperelliptic solutions to the Ernst equation (the stationary axisymmetric Einstein equations in vacuum) previously discovered by Korotkin and Neugebauer and Meinel can be derived via Riemann-Hilbert techniques. The present paper extends the discussion of the physical properties of these solutions that was begun in a Physical Review Letter, and supplies complete proofs. We identify a physically interesting subclass where the Ernst potential is everywhere regular except at a closed surface which might be identified with the surface of a body of revolution. The corresponding spacetimes are asymptotically flat and equatorially symmetric. This suggests that they could describe the exterior of an isolated body, for instance a relativistic star or a galaxy. Within this class, one has the freedom to specify a real function and a set of complex parameters which can possibly be used to solve certain boundary value problems for the Ernst equation. The solutions can have ergoregions, a Minkowskian limit and an ultrarelativistic limit where the metric approaches the extreme Kerr solution. We give explicit formulae for the potential on the axis and in the equatorial plane where the expressions simplify. Special attention is paid to the simplest non-static solutions (which are of genus two) to which the rigidly rotating dust disk belongs.Comment: 32 pages, 2 figures, uses pstricks.sty, updated version (October 7, 1998), to appear in Phys. Rev.
    corecore