3,299 research outputs found

    GMC Collisions as Triggers of Star Formation. I. Parameter Space Exploration with 2D Simulations

    Get PDF
    We utilize magnetohydrodynamic (MHD) simulations to develop a numerical model for GMC-GMC collisions between nearly magnetically critical clouds. The goal is to determine if, and under what circumstances, cloud collisions can cause pre-existing magnetically subcritical clumps to become supercritical and undergo gravitational collapse. We first develop and implement new photodissociation region (PDR) based heating and cooling functions that span the atomic to molecular transition, creating a multiphase ISM and allowing modeling of non-equilibrium temperature structures. Then in 2D and with ideal MHD, we explore a wide parameter space of magnetic field strength, magnetic field geometry, collision velocity, and impact parameter, and compare isolated versus colliding clouds. We find factors of ~2-3 increase in mean clump density from typical collisions, with strong dependence on collision velocity and magnetic field strength, but ultimately limited by flux-freezing in 2D geometries. For geometries enabling flow along magnetic field lines, greater degrees of collapse are seen. We discuss observational diagnostics of cloud collisions, focussing on 13CO(J=2-1), 13CO(J=3-2), and 12CO(J=8-7) integrated intensity maps and spectra, which we synthesize from our simulation outputs. We find the ratio of J=8-7 to lower-J emission is a powerful diagnostic probe of GMC collisions

    Identifying tree populations for conservation action through geospatial analyses

    Get PDF
    Rapid development of information and communication technologies has made it possible to easily collect georeferenced information on species and their environment, and to use it for analyzing biological diversity, its distribution and threats to it. Such analyses can importantly inform development of conservation strategies and priorities, especially across countries or species distribution ranges (Guarino et al. 2002). Data for spatial analyses on species or genetic diversity and its distribution are collected in specifically designed studies, obtained from existing records of species occurrence, or both. Observations may be complemented by species distribution modelling, where the potential occurrence of a species is predicted based on its documented geographic distribution and climate in those areas. Results on the distribution of diversity, documented or modelled, can then be compared, for example, with existing protected areas, rates of forest degradation, threats of environmental changes, or socio-economic indicators, to identify priority tree populations and tailor strategies for their conservation and sustainable use (Pautasso 2009). In this paper recent case studies on spatial biodiversity analyses across the tropics are presented, demonstrating how such analyses can help to identify most unique or most threatened populations of a tree species for conservation actions. Insights on initiating collaborative research on diversity and distributions of important Asian tree species are also discussed

    Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms

    Get PDF
    We study the collective effects that emerge in waveguide quantum electrodynamics where several (artificial) atoms are coupled to a one-dimensional superconducting transmission line. Since single microwave photons can travel without loss for a long distance along the line, real and virtual photons emitted by one atom can be reabsorbed or scattered by a second atom. Depending on the distance between the atoms, this collective effect can lead to super- and subradiance or to a coherent exchange-type interaction between the atoms. Changing the artificial atoms transition frequencies, something which can be easily done with superconducting qubits (two levels artificial atoms), is equivalent to changing the atom-atom separation and thereby opens the possibility to study the characteristics of these collective effects. To study this waveguide quantum electrodynamics system, we extend previous work and present an effective master equation valid for an ensemble of inhomogeneous atoms driven by a coherent state. Using input-output theory, we compute analytically and numerically the elastic and inelastic scattering and show how these quantities reveal information about collective effects. These theoretical results are compatible with recent experimental results using transmon qubits coupled to a superconducting one-dimensional transmission line [van Loo (unpublished)]

    Modeling the evolution space of breakage fusion bridge cycles with a stochastic folding process

    Get PDF
    Breakage-Fusion-Bridge cycles in cancer arise when a broken segment of DNA is duplicated and an end from each copy joined together. This structure then 'unfolds' into a new piece of palindromic DNA. This is one mechanism responsible for the localised amplicons observed in cancer genome data. The process has parallels with paper folding sequences that arise when a piece of paper is folded several times and then unfolded. Here we adapt such methods to study the breakage-fusion-bridge structures in detail. We firstly consider discrete representations of this space with 2-d trees to demonstrate that there are 2^(n(n-1)/2) qualitatively distinct evolutions involving n breakage-fusion-bridge cycles. Secondly we consider the stochastic nature of the fold positions, to determine evolution likelihoods, and also describe how amplicons become localised. Finally we highlight these methods by inferring the evolution of breakage-fusion-bridge cycles with data from primary tissue cancer samples

    GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation

    Get PDF
    We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation sub-grid models. Two such models are explored: (1) Density-Regulated, i.e., fixed efficiency per free-fall time above a set density threshold; (2) Magnetically- Regulated, i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMC collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial sub-structure and more disturbed kinematics

    Long-term results of simplified frozen elephant trunk technique in complicated acute type A aortic dissection: A case–control study

    Get PDF
    Aim: To describe the long-term experience of a simplified frozen elephant trunk technique (sFETT) used in complicated acute type A aortic dissection (AAAD) treatment. Methods and results: Between January 2001 and December 2012, 34 patients (mean age 59.9 ± 11.0 years) with complicated AAAD (DeBakey I) underwent an emergency surgery including sFETT. sFETT consisted in gluing the dissected aortic arch wall layers with gelatine-resorcinol adhesive and video-assisted antegrade open arch aortic stent-graft deployment in the arch or proximal descending aorta. In addition to sFETT, the aortic root was addressed with standard techniques. A 30-day mortality was 14.7% (five patients) due to bleeding (1), multiple organ failure (2), and colon ischemia (2). Postoperative morbidity included neurological (2), renal (1) and cardio-pulmonary complications (4), as well as wound infection (1). Mean follow-up was 74.4 ± 45.0 months. Actual survival rates were 73.5% at 1 year, 70.2% at 5 years, and 58.5% at 13 years of follow-up. Six patients died during long-term follow-up from heart failure (1) and unknown reasons (5). Five patients required reoperation for aortic arch (3) or aorto-iliac (2) progression of aneurysm during the mid- and long-term follow-up. The remaining patients showed favorable evolution of the dissected aorta with false lumen occlusion in most cases and stable aortic diameters. Conclusions: In AAAD patients, sFETT as used in our series is an easy and safe technique to repair the aortic arch. Long-term results after sFETT showed false lumen occlusion and stable aortic diameter in up to 13 years of follow-up

    The determination of key skills from an economic perspective

    Get PDF

    Inactivity of nitric oxide synthase gene in the atherosclerotic human carotid artery

    Get PDF
    Objective : Nitric oxide (NO) inhibits thrombus formation, vascular contraction, and smooth muscle cell proliferation. We investigated whether NO release is enhanced after endothelial NO synthase (eNOS) gene transfer in atherosclerotic human carotid artery ex vivo. Methods and Results : Western blotting and immunohistochemistry revealed that transduction enhanced eNOS expression; however, neither nitrite production nor NO release measured by porphyrinic microsensor was altered. In contrast, transduction enhanced NO production in non-atherosclerotic rat aorta and human internal mammary artery. In transduced carotid artery, calcium-dependent eNOS activity was minimal and did not differ from control conditions. Vascular tetrahydrobiopterin concentrations did not differ between the experimental groups.Treatment of transduced carotid artery with FAD, FMN, NADPH, L-arginine, and either sepiapterin or tetrahydrobiopterin did not alter NO release. Superoxide formation was similar in transduced carotid artery and control. Treatment of transduced carotid artery with superoxide dismutase (SOD), PEG-SOD, PEG-catalase did not affect NO release. Conclusions : eNOS transduction in atherosclerotic human carotid artery results in high expression without any measurable activity of the recombinant protein. The defect in the atherosclerotic vessels is neither caused by cofactor deficiency nor enhanced NO breakdown. Since angioplasty is performed in atherosclerotic arteries,eNOS gene therapy is unlikely to provide clinical benefi
    corecore