40,075 research outputs found
On model selection criteria for climate change impact studies
Climate change impact studies inform policymakers on the estimated damages of
future climate change on economic, health and other outcomes. In most studies,
an annual outcome variable is observed, e.g. annual mortality rate, along with
higher-frequency regressors, e.g. daily temperature and precipitation.
Practitioners use summaries of the higher-frequency regressors in fixed effects
panel models. The choice over summary statistics amounts to model selection.
Some practitioners use Monte Carlo cross-validation (MCCV) to justify a
particular specification. However, conventional implementation of MCCV with
fixed testing-to-full sample ratios tends to select over-fit models. This paper
presents conditions under which MCCV, and also information criteria, can
deliver consistent model selection. Previous work has established that the
Bayesian information criterion (BIC) can be inconsistent for non-nested
selection. We illustrate that the BIC can also be inconsistent in our
framework, when all candidate models are misspecified. Our results have
practical implications for empirical conventions in climate change impact
studies. Specifically, they highlight the importance of a priori information
provided by the scientific literature to guide the models considered for
selection. We emphasize caution in interpreting model selection results in
settings where the scientific literature does not specify the relationship
between the outcome and the weather variables.Comment: Additional simulation results available from authors by reques
Spectral properties of photon pairs generated by spontaneous four wave mixing in inhomogeneous photonic crystal fibers
The photonic crystal fiber (PCF) is one of the excellent media for generating
photon pairs via spontaneous four wave mixing. Here we study how the
inhomogeneity of PCFs affect the spectral properties of photon pairs from both
the theoretical and experimental aspects. The theoretical model shows that the
photon pairs born in different place of the inhomogeneous PCF are coherently
superposed, and a modulation in the broadened spectrum of phase matching
function will appear, which prevents the realization of spectral factorable
photon pairs. In particular, the inhomogeneity induced modulation can be
examined by measuring the spectrum of individual signal or idler field when the
asymmetric group velocity matching is approximately fulfilled. Our experiments
are performed by tailoring the spectrum of pulsed pump to satisfy the specified
phase matching condition. The observed spectra of individual signal photons,
which are produced from different segments of the 1.9 m inhomogeneous PCF,
agree with the theoretical predictions. The investigations are not only useful
for fiber based quantum state engineering, but also provide a dependable method
to test the homogeneity of PCF.Comment: to appear in Phys. Rev.
Modification of the National Weather Service Distributed Hydrologic Model for subsurface water exchanges between grids
To account for spatial variability of precipitation, as well as basin physiographic properties, the National Weather Service (NWS) has developed a distributed version of its hydrologic component, termed the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM). Because channels are the only source of water exchange between neighboring computational elements, the absence of such exchange has been identified as a weakness in the model. The primary objective of this paper is to modify the model structure to account for subsurface water exchanges without dramatically altering the conceptual framework of the water balance module. The subsurface exchanges are established by partitioning the slow response components released from the lower layer storages into two parts: the first part involves the grid's conceptual channel, while the second is added to the lower layer storages of the downstream pixel. Realizing the deficiency of the water balance module to locate the lower zone layers in sufficient depths, a complementary study is conducted to test the feasibility of further improvement in the modified model by equally shifting downward the lower zone layers of all pixels over the basin. The Baron Fork at Eldon, Oklahoma, is chosen as the test basin. Ten years of grid-based multisensor precipitation data are used to investigate the effects of the modification, plus shifting the lower zone layers on model performance. The results show that the modified-shifted HL-RDHM can markedly improve the streamflow simulations at the interior point, as well as very high peak-flow simulations at the basin's outlet. Copyright 2011 by the American Geophysical Union
Hydrodynamic interaction in quasi-two-dimensional suspensions
Confinement between two parallel surfaces is found, theoretically and
experimentally, to drastically affect the hydrodynamic interaction between
colloid particles, changing the sign of the coupling, its decay with distance
and its concentration dependence. In particular, we show that three-body
effects do not modify the coupling at large distances as would be expected from
hydrodynamic screening.Comment: 8 pages, 2 figure
- …
