423,690 research outputs found
Dual canonical bases for the quantum special linear group and invariant subalgebras
A string basis is constructed for each subalgebra of invariants of the
function algebra on the quantum special linear group. By analyzing the string
basis for a particular subalgebra of invariants, we obtain a ``canonical
basis'' for every finite dimensional irreducible
-module. It is also shown that the algebra of
functions on any quantum homogeneous space is generated by quantum minors.Comment: 15 page
Serre presentations of Lie superalgebras
An analogue of Serre's theorem is established for finite dimensional simple
Lie superalgebras, which describes presentations in terms of Chevalley
generators and Serre type relations relative to all possible choices of Borel
subalgebras. The proof of the theorem is conceptually transparent; it also
provides an alternative approach to Serre's theorem for ordinary Lie algebras.Comment: 45 page
Quantum supergroups and topological invariants of three - manifolds
The Reshetikhin - Turaeve approach to topological invariants of three -
manifolds is generalized to quantum supergroups. A general method for
constructing three - manifold invariants is developed, which requires only the
study of the eigenvalues of certain central elements of the quantum supergroup
in irreducible representations. To illustrate how the method works,
at odd roots of unity is studied in detail, and the
corresponding topological invariants are obtained.Comment: 22 page
Topological Invariants For Lens Spaces And Exceptional Quantum Groups
The Reshetikhin - Turaev invariants arising from the quantum groups
associated with the exceptional Lie algebras , and at odd
roots of unity are constructed and explicitly computed for all the lens spaces.Comment: LaTeX 10 page
Gamma Ray Burst Prompt Emission Variability in Synchrotron and Synchrotron Self-Compton Lightcurves
Gamma Ray Burst prompt emission is believed to originate from electrons
accelerated in a highly relativistic outflow. "Internal shocks" due to
collisions between shells ejected by the central engine is a leading candidate
for electron acceleration. While synchrotron radiation is generally invoked to
interpret prompt gamma-ray emission within the internal shock model,
synchrotron self-Compton (SSC) is also considered as a possible candidate of
radiation mechanism. In this case, one would expect a synchrotron emission
component at low energies, and the naked-eye GRB 080319B has been considered as
such an example. In the view that the gamma-ray lightcurve of GRB 080319B is
much more variable than its optical counterpart, in this paper we study the
relative variability between the synchrotron and SSC components. We develop a
"top-down" formalism by using observed quantities to infer physical parameters,
and subsequently to study the temporal structure of synchrotron and SSC
components of a GRB. We complement the formalism with a "bottom-up" approach
where the synchrotron and SSC lightcurves are calculated through a Monte-Carlo
simulations of the internal shock model. Both approaches lead to the same
conclusion. Small variations in the synchrotron lightcurve can be only
moderately amplified in the SSC lightcurve. The SSC model therefore cannot
adequately interpret the gamma-ray emission properties of GRB 080319B.Comment: 13 pages, 4 figures, accepted for publication in MNRA
A Rate-Splitting Based Bound-Approaching Transmission Scheme for the Two-User Symmetric Gaussian Interference Channel with Common Messages
This paper is concerned with a rate-splitting based transmission strategy for the two-user symmetric Gaussian interference channel that contains common messages only. Each transmitter encodes its common message into multiple layers by multiple codebooks that drawn from one separate code book, and transmits the superposition of the messages corresponding to these layers; each receiver decodes the messages from all layers of the two users successively. Two schemes are proposed for decoding order and optimal power allocation among layers respectively. With the proposed decoding order scheme, the sum-rate can be increased by rate-splitting, especially at the optimal number of rate-splitting, using average power allocation in moderate and weak interference regime. With the two proposed schemes at the receiver and the transmitter respectively, the sum-rate achieves the inner bound of HK without time-sharing. Numerical results show that the proposed optimal power allocation scheme with the proposed decoding order can achieve significant improvement of the performance over equal power allocation, and achieve the sum-rate within two bits per channel use (bits/channel use) of the sum capacity
Quark Coalescence with Quark Number Conservation and the Effect on Quark-Hadron Scaling
We develop a new formulation of the quark coalescence model by including the
quark number conservation in order to describe the hadronization of the bulk of
the quark-gluon plasma. The scalings between hadron and quark phase space
distributions are shown to depend on the transverse momentum. For hard quarks,
our general scalings reproduce the usual quadratic scaling relation for mesons
and the cubic scaling relation for baryons. For softer quarks, however, the
inclusion of the quark number conservation leads to a linear scaling for the
hadron species that dominates the quark number of each flavor, while the
scalings of non-dominant hadrons depend on the coalescence dynamics. For charm
mesons, we find that the distribution of soft mesons does not depend on the
light quark distribution but the distribution of soft mesons is
inversely correlated to the light quark distribution.Comment: Added 6 more equations to explain the derivations; added discussions;
final published versio
- …
