313,629 research outputs found
BCS-BEC crossover in bilayers of cold fermionic polar molecules
We investigate the quantum and thermal phase diagram of fermionic polar molecules loaded in a bilayer trapping potential with perpendicular dipole moment. We use both a BCS-theory approach that is most reliable at weak coupling and a strong-coupling approach that considers the two-body bound dimer states with one molecule in each layer as the relevant degree of freedom. The system ground state is a Bose-Einstein condensate (BEC) of dimer bound states in the low-density limit and a paired superfluid (BCS) state in the high-density limit. At zero temperature, the intralayer repulsion is found to broaden the regime of BCS-BEC crossover and can potentially induce system collapse through the softening of roton excitations. The BCS theory and the strongly coupled dimer picture yield similar predictions for the parameters of the crossover regime. The Berezinskii-Kosterlitz-Thouless transition temperature of the dimer superfluid is also calculated. The crossover can be driven by many-body effects and is strongly affected by the intralayer interaction which was ignored in previous studies
Mass retention efficiencies of He accretion onto carbon-oxygen white dwarfs and type Ia supernovae
Type Ia supernovae (SNe Ia) play a crucial role in studying cosmology and
galactic chemical evolution. They are thought to be thermonuclear explosions of
carbon-oxygen white dwarfs (CO WDs) when their masses reach the Chandrasekar
mass limit in binaries. Previous studies have suggested that He novae may be
progenitor candidates of SNe Ia. However, the mass retention efficiencies
during He nova outbursts are still uncertain. In this article, we aim to study
the mass retention efficiencies of He nova outbursts and to investigate whether
SNe Ia can be produced through He nova outbursts. Using the stellar evolution
code Modules for Experiments in Stellar Astrophysics, we simulated a series of
multicycle He-layer flashes, in which the initial WD masses range from 0.7 to
1.35 Msun with various accretion rates. We obtained the mass retention
efficiencies of He nova outbursts for various initial WD masses, which can be
used in the binary population synthesis studies. In our simulations, He nova
outbursts can increase the mass of the WD to the Chandrasekar mass limit and
the explosive carbon burning can be triggered in the center of the WD; this
suggests that He nova outbursts can produce SNe Ia. Meanwhile, the mass
retention efficiencies in the present work are lower than those of previous
studies, which leads to a lower birthrates of SNe Ia through the WD + He star
channel. Furthermore, we obtained the elemental abundances distribution at the
moment of explosive carbon burning, which can be used as the initial input
parameters in studying explosion models of SNe Ia.Comment: 8 pages, 12 figures, 2 tables, published in Astronomy & Astrophysics
(A&A 604, A31, 2017
Chiral extrapolation of nucleon magnetic form factors
The extrapolation of nucleon magnetic form factors calculated within lattice
QCD is investigated within a framework based upon heavy baryon chiral
effective-field theory. All one-loop graphs are considered at arbitrary
momentum transfer and all octet and decuplet baryons are included in the
intermediate states. Finite range regularisation is applied to improve the
convergence in the quark-mass expansion. At each value of the momentum transfer
(), a separate extrapolation to the physical pion mass is carried out as a
function of alone. Because of the large values of involved, the
role of the pion form factor in the standard pion-loop integrals is also
investigated. The resulting values of the form factors at the physical pion
mass are compared with experimental data as a function of and demonstrate
the utility and accuracy of the chiral extrapolation methods presented herein.Comment: 19 pages, 10 figure
Finite-horizon H∞ control for discrete time-varying systems with randomly occurring nonlinearities and fading measurements
This technical note deals with the H∞ control problem for a class of discrete time-varying nonlinear systems with both randomly occurring nonlinearities and fading measurements over a finite-horizon. The system measurements are transmitted through fading channels described by a modified stochastic Rice fading model. The purpose of the addressed problem is to design a set of time-varying controllers such that, in the presence of channel fading and randomly occurring nonlinearities, the H∞ performance is guaranteed over a given finite-horizon. The model transformation technique is first employed to simplify the addressed problem, and then the stochastic analysis in combination with the completing squares method are carried out to obtain necessary and sufficient conditions of an auxiliary index which is closely related to the finite-horizon H∞ performance. Moreover, the time-varying controller parameters are characterized via solving coupled backward recursive Riccati difference equations (RDEs). A simulation example is utilized to illustrate the usefulness of the proposed controller design scheme
Superfluidity of hyperons in neutron stars
We study the superfluidity of hyperons in neutron star
matter and neutron stars. We use the relativistic mean field (RMF) theory to
calculate the properties of neutron star matter. In the RMF approach, the
meson-hyperon couplings are constrained by reasonable hyperon potentials that
include the updated information from recent developments in hypernuclear
physics. To examine the pairing gap of hyperons, we employ
several interactions based on the Nijmegen models and used in
double- hypernuclei studies. It is found that the maximal pairing gap
obtained is a few tenths of a MeV. The magnitude and the density region of the
pairing gap are dependent on the interaction and the treatment
of neutron star matter. We calculate neutron star properties and find that
whether the superfluidity of hyperons exists in the core of
neutron stars mainly depends on the interaction used.Comment: 22 pages, 2 Tables, 6 Figur
Limiting performance of dynamic systems subject to random inputs
The problem of determining the limiting performance characteristics of mechanical systems subject to random input is studied. A review is presented of the classical work in the optimal design of stochastic systems. Some recent results of stochastic optimal control theory are employed. The solution to the limiting performance problem is formulated in both the frequency and time domains. Both formulations require substantial, burdensome computations when applied to large scale systems
Ultracold three-body collisions near narrow Feshbach resonances
We study ultracold three-body collisions of bosons and fermions when the
interatomic interaction is tuned near a narrow Feshbach resonance. We show that
the width of the resonance has a substantial impact on the collisional
properties of ultracold gases in the strongly interacting regime. We obtain
numerical and analytical results that allow us to identify universal features
related to the resonance width. For narrow resonances, we have found a
suppression of all inelastic processes in boson systems leading to deeply bound
states and an enhancement for fermion systems.Comment: 5 pages, 3 figure
- …
