18,467 research outputs found
Tunneling through magnetic molecules with arbitrary angle between easy axis and magnetic field
Inelastic tunneling through magnetically anisotropic molecules is studied
theoretically in the presence of a strong magnetic field. Since the molecular
orientation is not well controlled in tunneling experiments, we consider
arbitrary angles between easy axis and field. This destroys all conservation
laws except that of charge, leading to a rich fine structure in the
differential conductance. Besides single molecules we also study monolayers of
molecules with either aligned or random easy axes. We show that detailed
information on the molecular transitions and orientations can be obtained from
the differential conductance for varying magnetic field. For random easy axes,
averaging over orientations leads to van Hove singularities in the differential
conductance. Rate equations in the sequential-tunneling approximation are
employed. An efficient approximation for their solution for complex molecules
is presented. The results are applied to Mn12-based magnetic molecules.Comment: 10 pages, 10 figures include
The noncommutative Kubo Formula: Applications to Transport in Disordered Topological Insulators with and without Magnetic Fields
The non-commutative theory of charge transport in mesoscopic aperiodic
systems under magnetic fields, developed by Bellissard, Shulz-Baldes and
collaborators in the 90's, is complemented with a practical numerical
implementation. The scheme, which is developed within a -algebraic
framework, enable efficient evaluations of the non-commutative Kubo formula,
with errors that vanish exponentially fast in the thermodynamic limit.
Applications to a model of a 2-dimensional Quantum spin-Hall insulator are
given. The conductivity tensor is mapped as function of Fermi level, disorder
strength and temperature and the phase diagram in the plane of Fermi level and
disorder strength is quantitatively derived from the transport simulations.
Simulations at finite magnetic field strength are also presented.Comment: 10 figure
Negaton and Positon solutions of the soliton equation with self-consistent sources
The KdV equation with self-consistent sources (KdVES) is used as a model to
illustrate the method. A generalized binary Darboux transformation (GBDT) with
an arbitrary time-dependent function for the KdVES as well as the formula for
-times repeated GBDT are presented. This GBDT provides non-auto-B\"{a}cklund
transformation between two KdV equations with different degrees of sources and
enable us to construct more general solutions with arbitrary -dependent
functions. By taking the special -function, we obtain multisoliton,
multipositon, multinegaton, multisoliton-positon, multinegaton-positon and
multisoliton-negaton solutions of KdVES. Some properties of these solutions are
discussed.Comment: 13 pages, Latex, no figues, to be published in J. Phys. A: Math. Ge
Optimizing transport efficiency on scale-free networks through assortative or dissortative topology
We find that transport on scale-free random networks depends strongly on
degree-correlated network topologies whereas transport on
Erds-Rnyi networks is insensitive to the degree
correlation. An approach for the tuning of scale-free network transport
efficiency through assortative or dissortative topology is proposed. We
elucidate that the unique transport behavior for scale-free networks results
from the heterogeneous distribution of degrees.Comment: 4 pages, 3 figure
The Unusual Superconducting State at 49 K in Electron-Doped CaFe2As2 at Ambient
We report the detection of unusual superconductivity up to 49 K in single
crystalline CaFe2As2 via electron-doping by partial replacement of Ca by
rare-earth. The superconducting transition observed suggests the possible
existence of two phases: one starting at ~ 49 K, which has a low critical field
~ 4 Oe, and the other at ~ 21 K, with a much higher critical field > 5 T. Our
observations are in strong contrast to previous reports of doping or
pressurizing layered compounds AeFe2As2 (or Ae122), where Ae = Ca, Sr or Ba. In
Ae122, hole-doping has been previously observed to generate superconductivity
with a transition temperature (Tc) only up to 38 K and pressurization has been
reported to produce superconductivity with a Tc up to 30 K. The unusual 49 K
phase detected will be discussed.Comment: 11 pages, 8 figure
Hidden Quantum Markov Models and Open Quantum Systems with Instantaneous Feedback
Hidden Markov Models are widely used in classical computer science to model
stochastic processes with a wide range of applications. This paper concerns the
quantum analogues of these machines --- so-called Hidden Quantum Markov Models
(HQMMs). Using the properties of Quantum Physics, HQMMs are able to generate
more complex random output sequences than their classical counterparts, even
when using the same number of internal states. They are therefore expected to
find applications as quantum simulators of stochastic processes. Here, we
emphasise that open quantum systems with instantaneous feedback are examples of
HQMMs, thereby identifying a novel application of quantum feedback control.Comment: 10 Pages, proceedings for the Interdisciplinary Symposium on Complex
Systems in Florence, September 2014, minor correction
Fast geometric gate operation of superconducting charge qubits in circuit QED
A scheme for coupling superconducting charge qubits via a one-dimensional
superconducting transmission line resonator is proposed. The qubits are working
at their optimal points, where they are immune to the charge noise and possess
long decoherence time. Analysis on the dynamical time evolution of the
interaction is presented, which is shown to be insensitive to the initial state
of the resonator field. This scheme enables fast gate operation and is readily
scalable to multiqubit scenario
- …
