25,259 research outputs found

    Bound States of the Heavy Flavor Vector Mesons and Y(4008) and Z1+(4050)Z^{+}_1(4050)

    Full text link
    The DDˉD^{*}\bar{D}^{*} and BBˉB^{*}\bar{B}^{*} systems are studied dynamically in the one boson exchange model, where π\pi, η\eta, σ\sigma, ρ\rho and ω\omega exchanges are taken into account. Ten allowed states with low spin parity are considered. We suggest that the 11^{--}, 2++2^{++}, 0++0^{++} and 0+0^{-+} BBˉB^{*}\bar{B}^{*} molecules should exist, and the DDˉD^{*}\bar{D}^{*} bound states with the same quantum numbers very likely exist as well. However, the CP exotic (1+1^{-+}, 2+2^{+-}) BBˉB^{*}\bar{B}^{*} and DDˉD^{*}\bar{D}^{*} states may not be bound by the one boson exchange potential. We find that the I=0 configuration is more deeply bound than the I=1 configuration, hence Z1+(4050)Z^{+}_1(4050) may not be a DDˉD^{*}\bar{D}^{*} molecule. Although Y(4008) is close to the DDˉD^{*}\bar{D}^{*} threshold, the interpretation of Y(4008) as a DDˉD^{*}\bar{D}^{*} molecule is not favored by its huge width. 11^{--} DDˉD^{*}\bar{D}^{*} and BBˉB^{*}\bar{B}^{*} states can be produced copiously in e+ee^{+}e^{-} annihilation, detailed scanning of the e+ee^{+}e^{-} annihilation data near the DDˉD^{*}\bar{D}^{*} and BBˉB^{*}\bar{B}^{*} threshold is an important check to our predictions.Comment: 17 pages,6 figur

    η\eta production off the proton in a Regge-plus-chiral quark approach

    Full text link
    A chiral constituent quark model approach, embodying s- and u-channel exchanges,complemented with a Reggeized treatment for t-channel is presented. A model is obtained allowing data for πpηn\pi^- p \to \eta n and γpηp\gamma p \to \eta p to be describe satisfactorily. For the latter reaction, recently released data by CLAS and CBELSA/TAPS Collaborations in the system total energy range 1.6W2.81.6 \lesssim W \lesssim 2.8 GeV are well reproduced due to the inclusion of Reggeized trajectories instead of simple ρ\rho and ω\omega poles. Contribution from "missing" resonances is found to be negligible in the considered processes.Comment: 23 pages.4 figures,4 tables, to appear in Phys.Rev.

    Entanglement detection from interference fringes in atom-photon systems

    Full text link
    A measurement scheme of atomic qubits pinned at given positions is studied by analyzing the interference pattern obtained when they emit photons spontaneously. In the case of two qubits, a well-known relation is revisited, in which the interference visibility is equal to the concurrence of the state in the infinite spatial separation limit of the qubits. By taking into account the super-radiant and sub-radiant effects, it is shown that a state tomography is possible when the qubit spatial separation is comparable to the wavelength of the atomic transition. In the case of three qubits, the relations between various entanglement measures and the interference visibility are studied, where the visibility is defined from the two-qubit case. A qualitative correspondence among these entanglement relations is discussed. In particular, it is shown that the interference visibility is directly related to the maximal bipartite negativity.Comment: 12 pages, 2 figures, published versio

    Eliashberg theory of superconductivity and inelastic rare-earth impurity scattering in filled skutterudite La1x_{1-x}Prx_{x}Os4_{4}Sb12_{12}

    Full text link
    We study the influence of inelastic rare-earth impurity scattering on electron-phonon mediated superconductivity and mass renormalization in (La1x_{1-x}Prx_{x})Os4_{4}Sb12_{12} compounds. Solving the strong coupling Eliashberg equations we find that the dominant quadrupolar component of the inelastic scattering on Pr impurities yields an enhancement of the superconducting transition temperature Tc_c in LaOs4_{4}Sb12_{12} and increases monotonically as a function of Pr concentration. The calculated results are in good agreement with the experimentally observed Tc(x)_c (x) dependence. Our analysis suggests that phonons and quadrupolar excitations cause the attractive electron interaction which results in the formation of Cooper pairs and singlet superconductivity in PrOs4_{4}Sb12_{12}.Comment: 5 pages,4 figures, revised title suggested by editor, original fig.4 and fig.5 combined together, discussion added before conclusio

    Forty-Four Pass Fibre Optic Loop for Improving the Sensitivity of Surface Plasmon Resonance Sensors

    Full text link
    A forty-four pass fibre optic surface plasmon resonance sensor that enhances detection sensitivity according to the number of passes is demonstrated for the first time. The technique employs a fibre optic recirculation loop that passes the detection spot forty- four times, thus enhancing sensitivity by a factor of forty-four. Presently, the total number of passes is limited by the onset of lasing action of the recirculation loop. This technique offers a significant sensitivity improvement for various types of plasmon resonance sensors that may be used in chemical and biomolecule detections.Comment: Submitted for publication; patent disclosure submitte

    Efficient operators for studying higher partial waves

    Full text link
    An extended multi-hadron operator is developed to extract the spectra of irreducible representations in the finite volume. The irreducible representations of the cubic group are projected using a coordinate-space operator. The correlation function of this operator is computationally efficient to extract lattice spectra. In particular, this new formulation only requires propagator inversions from two distinct locations, at fixed physical separation. We perform a proof-of-principle study on a 243×4824^3 \times 48 lattice volume with mπ900m_\pi\approx 900~MeV by isolating the spectra of A1+A^+_1, E+E^+ and T2+T^+_2 of the ππ\pi\pi system with isospin-2 in the rest frame.Comment: 8 pages, 3 figures, Contribution to the conference Lattice201

    Critical currents for vortex defect motion in superconducting arrays

    Full text link
    We study numerically the motion of vortices in two-dimensional arrays of resistively shunted Josephson junctions. An extra vortex is created in the ground states by introducing novel boundary conditions and made mobile by applying external currents. We then measure critical currents and the corresponding pinning energy barriers to vortex motion, which in the unfrustrated case agree well with previous theoretical and experimental findings. In the fully frustrated case our results also give good agreement with experimental ones, in sharp contrast with the existing theoretical prediction. A physical explanation is provided in relation with the vortex motion observed in simulations.Comment: To appear in Physical Review

    Hamiltonian effective field theory study of the N(1440)\mathbf{N^*(1440)} resonance in lattice QCD

    Full text link
    We examine the phase shifts and inelasticities associated with the N(1440)N^*(1440) Roper resonance and connect these infinite-volume observables to the finite-volume spectrum of lattice QCD using Hamiltonian effective field theory. We explore three hypotheses for the structure of the Roper resonance. All three hypotheses are able to describe the scattering data well. In the third hypothesis the Roper resonance couples the low-lying bare basis-state component associated with the ground state nucleon with the virtual meson-baryon contributions. Here the non-trivial superpositions of the meson-baryon scattering states are complemented by bare basis-state components explaining their observation in contemporary lattice QCD calculations. The merit of this scenario lies in its ability to not only describe the observed nucleon energy levels in large-volume lattice QCD simulations but also explain why other low-lying states have been missed in today's lattice QCD results for the nucleon spectrum.Comment: 14 pages, 14 figures; version to be published in Phys. Rev.

    Hamiltonian effective field theory study of the N(1535)\mathbf{N^*(1535)} resonance in lattice QCD

    Full text link
    Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying JP=1/2J^P=1/2^- nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.Comment: 5 pages, 2 figures; version published in Phys. Rev. Let

    Ghost Busting: PT-Symmetric Interpretation of the Lee Model

    Full text link
    The Lee model was introduced in the 1950s as an elementary quantum field theory in which mass, wave function, and charge renormalization could be carried out exactly. In early studies of this model it was found that there is a critical value of g^2, the square of the renormalized coupling constant, above which g_0^2, the square of the unrenormalized coupling constant, is negative. Thus, for g^2 larger than this critical value, the Hamiltonian of the Lee model becomes non-Hermitian. It was also discovered that in this non-Hermitian regime a new state appears whose norm is negative. This state is called a ghost state. It has always been assumed that in this ghost regime the Lee model is an unacceptable quantum theory because unitarity appears to be violated. However, in this regime while the Hamiltonian is not Hermitian, it does possess PT symmetry. It has recently been discovered that a non-Hermitian Hamiltonian having PT symmetry may define a quantum theory that is unitary. The proof of unitarity requires the construction of a new time-independent operator called C. In terms of C one can define a new inner product with respect to which the norms of the states in the Hilbert space are positive. Furthermore, it has been shown that time evolution in such a theory is unitary. In this paper the C operator for the Lee model in the ghost regime is constructed exactly in the V/N-theta sector. It is then shown that the ghost state has a positive norm and that the Lee model is an acceptable unitary quantum field theory for all values of g^2.Comment: 20 pages, 9 figure
    corecore