25,259 research outputs found
Bound States of the Heavy Flavor Vector Mesons and Y(4008) and
The and systems are studied dynamically
in the one boson exchange model, where , , , and
exchanges are taken into account. Ten allowed states with low spin
parity are considered. We suggest that the , , and
molecules should exist, and the
bound states with the same quantum numbers very likely exist as well. However,
the CP exotic (, ) and
states may not be bound by the one boson exchange potential. We find that the
I=0 configuration is more deeply bound than the I=1 configuration, hence
may not be a molecule. Although Y(4008) is
close to the threshold, the interpretation of Y(4008) as a
molecule is not favored by its huge width.
and states can be produced copiously in
annihilation, detailed scanning of the annihilation
data near the and threshold is an
important check to our predictions.Comment: 17 pages,6 figur
production off the proton in a Regge-plus-chiral quark approach
A chiral constituent quark model approach, embodying s- and u-channel
exchanges,complemented with a Reggeized treatment for t-channel is presented. A
model is obtained allowing data for and to be describe satisfactorily. For the latter reaction, recently released
data by CLAS and CBELSA/TAPS Collaborations in the system total energy range
GeV are well reproduced due to the inclusion of
Reggeized trajectories instead of simple and poles.
Contribution from "missing" resonances is found to be negligible in the
considered processes.Comment: 23 pages.4 figures,4 tables, to appear in Phys.Rev.
Entanglement detection from interference fringes in atom-photon systems
A measurement scheme of atomic qubits pinned at given positions is studied by
analyzing the interference pattern obtained when they emit photons
spontaneously. In the case of two qubits, a well-known relation is revisited,
in which the interference visibility is equal to the concurrence of the state
in the infinite spatial separation limit of the qubits. By taking into account
the super-radiant and sub-radiant effects, it is shown that a state tomography
is possible when the qubit spatial separation is comparable to the wavelength
of the atomic transition. In the case of three qubits, the relations between
various entanglement measures and the interference visibility are studied,
where the visibility is defined from the two-qubit case. A qualitative
correspondence among these entanglement relations is discussed. In particular,
it is shown that the interference visibility is directly related to the maximal
bipartite negativity.Comment: 12 pages, 2 figures, published versio
Eliashberg theory of superconductivity and inelastic rare-earth impurity scattering in filled skutterudite LaPrOsSb
We study the influence of inelastic rare-earth impurity scattering on
electron-phonon mediated superconductivity and mass renormalization in
(LaPr)OsSb compounds. Solving the strong coupling
Eliashberg equations we find that the dominant quadrupolar component of the
inelastic scattering on Pr impurities yields an enhancement of the
superconducting transition temperature T in LaOsSb and
increases monotonically as a function of Pr concentration. The calculated
results are in good agreement with the experimentally observed T
dependence. Our analysis suggests that phonons and quadrupolar excitations
cause the attractive electron interaction which results in the formation of
Cooper pairs and singlet superconductivity in PrOsSb.Comment: 5 pages,4 figures, revised title suggested by editor, original fig.4
and fig.5 combined together, discussion added before conclusio
Forty-Four Pass Fibre Optic Loop for Improving the Sensitivity of Surface Plasmon Resonance Sensors
A forty-four pass fibre optic surface plasmon resonance sensor that enhances
detection sensitivity according to the number of passes is demonstrated for the
first time. The technique employs a fibre optic recirculation loop that passes
the detection spot forty- four times, thus enhancing sensitivity by a factor of
forty-four. Presently, the total number of passes is limited by the onset of
lasing action of the recirculation loop. This technique offers a significant
sensitivity improvement for various types of plasmon resonance sensors that may
be used in chemical and biomolecule detections.Comment: Submitted for publication; patent disclosure submitte
Efficient operators for studying higher partial waves
An extended multi-hadron operator is developed to extract the spectra of
irreducible representations in the finite volume. The irreducible
representations of the cubic group are projected using a coordinate-space
operator. The correlation function of this operator is computationally
efficient to extract lattice spectra. In particular, this new formulation only
requires propagator inversions from two distinct locations, at fixed physical
separation. We perform a proof-of-principle study on a lattice
volume with ~MeV by isolating the spectra of ,
and of the system with isospin-2 in the rest frame.Comment: 8 pages, 3 figures, Contribution to the conference Lattice201
Critical currents for vortex defect motion in superconducting arrays
We study numerically the motion of vortices in two-dimensional arrays of
resistively shunted Josephson junctions. An extra vortex is created in the
ground states by introducing novel boundary conditions and made mobile by
applying external currents. We then measure critical currents and the
corresponding pinning energy barriers to vortex motion, which in the
unfrustrated case agree well with previous theoretical and experimental
findings. In the fully frustrated case our results also give good agreement
with experimental ones, in sharp contrast with the existing theoretical
prediction. A physical explanation is provided in relation with the vortex
motion observed in simulations.Comment: To appear in Physical Review
Hamiltonian effective field theory study of the resonance in lattice QCD
We examine the phase shifts and inelasticities associated with the
Roper resonance and connect these infinite-volume observables to
the finite-volume spectrum of lattice QCD using Hamiltonian effective field
theory. We explore three hypotheses for the structure of the Roper resonance.
All three hypotheses are able to describe the scattering data well. In the
third hypothesis the Roper resonance couples the low-lying bare basis-state
component associated with the ground state nucleon with the virtual
meson-baryon contributions. Here the non-trivial superpositions of the
meson-baryon scattering states are complemented by bare basis-state components
explaining their observation in contemporary lattice QCD calculations. The
merit of this scenario lies in its ability to not only describe the observed
nucleon energy levels in large-volume lattice QCD simulations but also explain
why other low-lying states have been missed in today's lattice QCD results for
the nucleon spectrum.Comment: 14 pages, 14 figures; version to be published in Phys. Rev.
Hamiltonian effective field theory study of the resonance in lattice QCD
Drawing on experimental data for baryon resonances, Hamiltonian effective
field theory (HEFT) is used to predict the positions of the finite-volume
energy levels to be observed in lattice QCD simulations of the lowest-lying
nucleon excitation. In the initial analysis, the phenomenological
parameters of the Hamiltonian model are constrained by experiment and the
finite-volume eigenstate energies are a prediction of the model. The agreement
between HEFT predictions and lattice QCD results obtained on volumes with
spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a
more conventional analysis where the low-energy coefficients are constrained by
lattice QCD results, enabling a determination of resonance properties from
lattice QCD itself. Finally, the role and importance of various components of
the Hamiltonian model are examined.Comment: 5 pages, 2 figures; version published in Phys. Rev. Let
Ghost Busting: PT-Symmetric Interpretation of the Lee Model
The Lee model was introduced in the 1950s as an elementary quantum field
theory in which mass, wave function, and charge renormalization could be
carried out exactly. In early studies of this model it was found that there is
a critical value of g^2, the square of the renormalized coupling constant,
above which g_0^2, the square of the unrenormalized coupling constant, is
negative. Thus, for g^2 larger than this critical value, the Hamiltonian of the
Lee model becomes non-Hermitian. It was also discovered that in this
non-Hermitian regime a new state appears whose norm is negative. This state is
called a ghost state. It has always been assumed that in this ghost regime the
Lee model is an unacceptable quantum theory because unitarity appears to be
violated. However, in this regime while the Hamiltonian is not Hermitian, it
does possess PT symmetry. It has recently been discovered that a non-Hermitian
Hamiltonian having PT symmetry may define a quantum theory that is unitary. The
proof of unitarity requires the construction of a new time-independent operator
called C. In terms of C one can define a new inner product with respect to
which the norms of the states in the Hilbert space are positive. Furthermore,
it has been shown that time evolution in such a theory is unitary. In this
paper the C operator for the Lee model in the ghost regime is constructed
exactly in the V/N-theta sector. It is then shown that the ghost state has a
positive norm and that the Lee model is an acceptable unitary quantum field
theory for all values of g^2.Comment: 20 pages, 9 figure
- …
