556 research outputs found

    Pushing the precision limit of ground-based eclipse photometry

    Full text link
    Until recently, it was considered by many that ground-based photometry could not reach the high cadence sub-mmag regime because of the presence of the atmosphere. Indeed, high frequency atmospheric noises (mainly scintillation) limit the precision that high SNR photometry can reach within small time bins. If one is ready to damage the sampling of his photometric time-series, binning the data (or using longer exposures) allows to get better errors, but the obtained precision will be finally limited by low frequency noises. To observe several times the same planetary eclipse and to fold the photometry with the orbital period is thus generally considered as the only option to get very well sampled and precise eclipse light curve from the ground. Nevertheless, we show here that reaching the sub-mmag sub-min regime for one eclipse is possible with a ground-based instrument. This has important implications for transiting planets characterization, secondary eclipses measurement and small planets detection from the ground.Comment: Transiting Planets Proceeding IAU Symposium No.253, 2008. 7 pages, 4 figure

    GJ 436c? The contribution of transit timings

    Get PDF
    From recent high-accuracy transit timings measurements, we discard the 5 M planet recently proposed by Ribas et al. (2008). Thanks to a combined radial-velocity and transit timings overview we also define a mass/period domain in which a secondary planet may be found in the system. We also show that timings obtained until now, although not sufficient to remove degeneracies on mass and period, can still restrict the parameter space of the potential secondary plane

    Refraction in exoplanet atmospheres: Photometric signatures, implications for transmission spectroscopy, and search in Kepler data

    Full text link
    Refraction deflects photons that pass through atmospheres, which affects transit light curves. Refraction thus provides an avenue to probe physical properties of exoplanet atmospheres and to constrain the presence of clouds and hazes. In addition, an effective surface can be imposed by refraction, thereby limiting the pressure levels probed by transmission spectroscopy. The main objective of the paper is to model the effects of refraction on photometric light curves for realistic planets and to explore the dependencies on atmospheric physical parameters. We also explore under which circumstances transmission spectra are significantly affected by refraction. Finally, we search for refraction signatures in photometric residuals in Kepler data. We use the model of Hui & Seager (2002) to compute deflection angles and refraction transit light curves, allowing us to explore the parameter space of atmospheric properties. The observational search is performed by stacking large samples of transit light curves from Kepler. We find that out-of-transit refraction shoulders are the most easily observable features, which can reach peak amplitudes of ~10 parts per million (ppm) for planets around Sun-like stars. More typical amplitudes are a few ppm or less for Jovians and at the sub-ppm level for super-Earths. Interestingly, the signal-to-noise ratio of any refraction residuals for planets orbiting Sun-like hosts are expected to be similar for planets orbiting red dwarfs. We also find that the maximum depth probed by transmission spectroscopy is not limited by refraction for weakly lensing planets, but that the incidence of refraction can vary significantly for strongly lensing planets. We find no signs of refraction features in the stacked Kepler light curves, which is in agreement with our model predictions.Comment: Accepted for publication in A&

    The Spitzer search for the transits of HARPS low-mass planets - II. Null results for 19 planets

    Full text link
    Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits. In this context, we initiated in 2010 an ambitious Spitzer multi-Cycle transit search project that targeted 25 low-mass planets detected by radial velocity, focusing mainly on the shortest-period planets detected by the HARPS spectrograph. We report here null results for 19 targets of the project. For 16 planets out of 19, a transiting configuration is strongly disfavored or firmly rejected by our data for most planetary compositions. We derive a posterior probability of 83% that none of the probed 19 planets transits (for a prior probability of 22%), which still leaves a significant probability of 17% that at least one of them does transit. Globally, our Spitzer project revealed or confirmed transits for three of its 25 targeted planets, and discarded or disfavored the transiting nature of 20 of them. Our light curves demonstrate for Warm Spitzer excellent photometric precisions: for 14 targets out of 19, we were able to reach standard deviations that were better than 50ppm per 30 min intervals. Combined with its Earth-trailing orbit, which makes it capable of pointing any star in the sky and to monitor it continuously for days, this work confirms Spitzer as an optimal instrument to detect sub-mmag-deep transits on the bright nearby stars targeted by Doppler surveys.Comment: Accepted for publication in Astronomy and Astrophysics. 23 pages, 21 figure

    Ground-based follow-up observations of TRAPPIST-1 transits in the near-infrared

    Get PDF
    The TRAPPIST-1 planetary system is a favorable target for the atmospheric characterization of temperate earth-sized exoplanets by means of transmission spectroscopy with the forthcoming James Webb Space Telescope (JWST). A possible obstacle to this technique could come from the photospheric heterogeneity of the host star that could affect planetary signatures in the transit transmission spectra. To constrain further this possibility, we gathered an extensive photometric data set of 25 TRAPPIST-1 transits observed in the near-IR J band (1.2 μ\mum) with the UKIRT and the AAT, and in the NB2090 band (2.1 μ\mum) with the VLT during the period 2015-2018. In our analysis of these data, we used a special strategy aiming to ensure uniformity in our measurements and robustness in our conclusions. We reach a photometric precision of 0.003\sim0.003 (RMS of the residuals), and we detect no significant temporal variations of transit depths of TRAPPIST-1 b, c, e, and g over the period of three years. The few transit depths measured for planets d and f hint towards some level of variability, but more measurements will be required for confirmation. Our depth measurements for planets b and c disagree with the stellar contamination spectra originating from the possible existence of bright spots of temperature 4500 K. We report updated transmission spectra for the six inner planets of the system which are globally flat for planets b and g and some structures are seen for planets c, d, e, and f.Comment: accepted for publication in MNRA

    A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b

    Full text link
    Context. GJ 436b is one of the few transiting warm Neptunes for which a detailed characterisation of the atmosphere is possible, whereas its non-negligible orbital eccentricity calls for further investigation. Independent analyses of several individual datasets obtained with Spitzer have led to contradicting results attributed to the different techniques used to treat the instrumental effects. Aims. We aim at investigating these previous controversial results and developing our knowledge of the system based on the full Spitzer photometry dataset combined with new Doppler measurements obtained with the HARPS spectrograph. We also want to search for additional planets. Methods. We optimise aperture photometry techniques and the photometric deconvolution algorithm DECPHOT to improve the data reduction of the Spitzer photometry spanning wavelengths from 3-24 {\mu}m. Adding the high precision HARPS radial velocity data, we undertake a Bayesian global analysis of the system considering both instrumental and stellar effects on the flux variation. Results. We present a refined radius estimate of RP=4.10 +/- 0.16 R_Earth, mass MP=25.4 +/- 2.1 M_Earth and eccentricity e= 0.162 +/- 0.004 for GJ 436b. Our measured transit depths remain constant in time and wavelength, in disagreement with the results of previous studies. In addition, we find that the post-occultation flare-like structure at 3.6 {\mu}m that led to divergent results on the occultation depth measurement is spurious. We obtain occultation depths at 3.6, 5.8, and 8.0 {\mu}m that are shallower than in previous works, in particular at 3.6 {\mu}m. However, these depths still appear consistent with a metal-rich atmosphere depleted in methane and enhanced in CO/CO2, although perhaps less than previously thought. We find no evidence for a potential planetary companion, stellar activity, nor for a stellar spin-orbit misalignment. [ABRIDGED]Comment: 25 pages, 26 figures, 8 tables, accepted for publication in A&

    Transit confirmation and improved stellar and planet parameters for the super-Earth HD 97658 b and its host star

    Get PDF
    Super-Earths transiting nearby bright stars are key objects that simultaneously allow for accurate measurements of both their mass and radius, providing essential constraints on their internal composition. We present here the confirmation, based on Spitzer transit observations, that the super-Earth HD 97658 b transits its host star. HD 97658 is a low-mass (M=0.77±0.05MM_*=0.77\pm0.05\,M_{\odot}) K1 dwarf, as determined from the Hipparcos parallax and stellar evolution modeling. To constrain the planet parameters, we carry out Bayesian global analyses of Keck-HIRES radial velocities, and MOST and Spitzer photometry. HD 97658 b is a massive (MP=7.550.79+0.83MM_P=7.55^{+0.83}_{-0.79} M_{\oplus}) and large (RP=2.2470.095+0.098RR_{P} = 2.247^{+0.098}_{-0.095} R_{\oplus} at 4.5 μ\mum) super-Earth. We investigate the possible internal compositions for HD 97658 b. Our results indicate a large rocky component, by at least 60% by mass, and very little H-He components, at most 2% by mass. We also discuss how future asteroseismic observations can improve the knowledge of the HD 97658 system, in particular by constraining its age. Orbiting a bright host star, HD 97658 b will be a key target for coming space missions TESS, CHEOPS, PLATO, and also JWST, to characterize thoroughly its structure and atmosphere.Comment: 8 figures, accepted to Ap

    The CORALIE survey for southern extrasolar planets. XVI. Discovery of a planetary system around HD 147018 and of two long period and massive planets orbiting HD 171238 and HD 204313

    Full text link
    We report the detection of a double planetary system around HD 140718 as well as the discovery of two long period and massive planets orbiting HD 171238 and HD 204313. Those discoveries were made with the CORALIE Echelle spectrograph mounted on the 1.2-m Euler Swiss telescope located at La Silla Observatory, Chile. The planetary system orbiting the nearby G9 dwarf HD 147018 is composed of an eccentric inner planet (e=0.47) with twice the mass of Jupiter (2.1 MJup ) and with an orbital period of 44.24 days. The outer planet is even more massive (6.6 MJup) with a slightly eccentric orbit (e=0.13) and a period of 1008 days. The planet orbiting HD 171238 has a minimum mass of 2.6 MJup, a period of 1523 days and an eccentricity of 0.40. It orbits a G8 dwarfs at 2.5 AU. The last planet, HD 204313 b, is a 4.0 MJup -planet with a period of 5.3 years and has a low eccentricity (e = 0.13). It orbits a G5 dwarfs at 3.1 AU. The three parent stars are metal rich, which further strengthened the case that massive planets tend to form around metal rich stars.Comment: 6 pages, 6 figures, accepted for publication in A&

    The CORALIE survey for southern extra-solar planets XV. Discovery of two eccentric planets orbiting HD4113 and HD156846

    Full text link
    We report the detection of two very eccentric planets orbiting HD4113 and HD156846 with the CORALIE Echelle spectrograph mounted on the 1.2-m Euler Swiss telescope at La Silla. The first planet, HD4113b, has minimum mass of msini=1.6±0.2MJupm\sin{i}=1.6\pm0.2 M_{\rm Jup}, a period of P=526.59±0.21P=526.59\pm0.21 days and an eccentricity of e=0.903±0.02e=0.903\pm0.02. It orbits a metal rich G5V star at a=1.28a=1.28 AU which displays an additional radial velocity drift of 28 m s1^{-1}/yr observed during 8 years. The combination of the radial-velocity data and the non-detection of any main sequence stellar companion in our high contrast images taken at the VLT with NACO/SDI, characterizes the companion as a probable brown dwarf or as a faint white dwarf. The second planet, \object{HD 156846 b}, has minimum mass of msini=10.45±0.05m\sin{i}=10.45\pm0.05 MJup_{\rm Jup}, a period of P=359.51±0.09P=359.51\pm0.09 days, an eccentricity of e=0.847±0.002e=0.847\pm0.002 and is located at a=1.0a=1.0 AU from its parent star. HD156846 is a metal rich G0 dwarf and is also the primary of a wide binary system (a>250a>250 AU, P>4000P>4000 years). Its stellar companion, \object{IDS 17147-1914 B}, is a M4 dwarf. The very high eccentricities of both planets can be explained by Kozai oscillations induced by the presence of a third object.Comment: 4 pages, 5 figures, A&A Letter accepte
    corecore